C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.17 2013/01/17 10:42:43 mlosch Exp $ C $Name: checkpoint64c $ #include "SEAICE_OPTIONS.h" C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: C-- Contents C-- o SEAICE_JFNK C-- o SEAICE_JFNK_UPDATE CBOP C !ROUTINE: SEAICE_JFNK C !INTERFACE: SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE SEAICE_JFNK C | o Ice dynamics using a Jacobian-free Newton-Krylov solver C | following J.-F. Lemieux et al. Improving the numerical C | convergence of viscous-plastic sea ice models with the C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229, C | 2840-2852 (2010). C | o The logic follows JFs code. C *==========================================================* C | written by Martin Losch, Oct 2012 C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "DYNVARS.h" #include "GRID.h" #include "SEAICE_SIZE.h" #include "SEAICE_PARAMS.h" #include "SEAICE.h" #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" #endif C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C myTime :: Simulation time C myIter :: Simulation timestep number C myThid :: my Thread Id. number _RL myTime INTEGER myIter INTEGER myThid #if ( (defined SEAICE_CGRID) && \ (defined SEAICE_ALLOW_JFNK) && \ (defined SEAICE_ALLOW_DYNAMICS) ) C !FUNCTIONS: LOGICAL DIFFERENT_MULTIPLE EXTERNAL DIFFERENT_MULTIPLE C !LOCAL VARIABLES: C === Local variables === C i,j,bi,bj :: loop indices INTEGER i,j,bi,bj C loop indices INTEGER newtonIter INTEGER krylovIter, krylovFails INTEGER totalKrylovItersLoc, totalNewtonItersLoc C FGMRES flag that determines amount of output messages of fgmres INTEGER iOutFGMRES C FGMRES flag that indicates what fgmres wants us to do next INTEGER iCode _RL JFNKresidual _RL JFNKresidualKm1 C parameters to compute convergence criterion _RL phi_e, alp_e, JFNKgamma_lin _RL FGMRESeps _RL JFNKtol C _RL recip_deltaT LOGICAL JFNKconverged, krylovConverged LOGICAL writeNow CHARACTER*(MAX_LEN_MBUF) msgBuf C C u/vIceRes :: residual of sea-ice momentum equations _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C vector version of the residuals _RL resTmp (nVec,1,nSx,nSy) C du/vIce :: ice velocity increment to be added to u/vIce _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C precomputed (= constant per Newton iteration) versions of C zeta, eta, and DWATN, press _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) CEOP C Initialise newtonIter = 0 krylovFails = 0 totalKrylovItersLoc = 0 JFNKconverged = .FALSE. JFNKtol = 0. _d 0 JFNKresidual = 0. _d 0 JFNKresidualKm1 = 0. _d 0 FGMRESeps = 0. _d 0 recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn iOutFGMRES=0 C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration IF ( debugLevel.GE.debLevC .AND. & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) & iOutFGMRES=1 C DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx uIceRes(I,J,bi,bj) = 0. _d 0 vIceRes(I,J,bi,bj) = 0. _d 0 duIce (I,J,bi,bj) = 0. _d 0 dvIce (I,J,bi,bj) = 0. _d 0 uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) ENDDO ENDDO C Compute things that do no change during the Newton iteration: C sea-surface tilt and wind stress: C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT ENDDO ENDDO ENDDO ENDDO C Start nonlinear Newton iteration: outer loop iteration DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND. & .NOT.JFNKconverged ) newtonIter = newtonIter + 1 C Compute initial residual F(u), (includes computation of global C variables DWATN, zeta, and eta) IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) C local copies of precomputed coefficients that are to stay C constant for the preconditioner DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) etaPre(I,J,bi,bj) = eta(I,J,bi,bj) etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) ENDDO ENDDO ENDDO ENDDO C compute convergence criterion for linear preconditioned FGMRES JFNKgamma_lin = JFNKgamma_lin_max IF ( newtonIter.GT.1.AND.newtonIter.LE.100 & .AND.JFNKresidual.LT.JFNKres_t ) THEN C Eisenstat, 1996, equ.(2.6) phi_e = 1. _d 0 alp_e = 1. _d 0 JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) ENDIF C save the residual for the next iteration JFNKresidualKm1 = JFNKresidual C C The Krylov iteration using FGMRES, the preconditioner is LSOR C for now. The code is adapted from SEAICE_LSR, but heavily stripped C down. C krylovIter is mapped into "its" in seaice_fgmres and is incremented C in that routine krylovIter = 0 iCode = 0 C JFNKconverged = JFNKresidual.LT.JFNKtol C C do Krylov loop only if convergence is not reached C IF ( .NOT.JFNKconverged ) THEN C C start Krylov iteration (FGMRES) C krylovConverged = .FALSE. FGMRESeps = JFNKgamma_lin * JFNKresidual DO WHILE ( .NOT.krylovConverged ) C solution vector sol = du/vIce C residual vector (rhs) Fu = u/vIceRes C output work vectors wk1, -> input work vector wk2 C CALL SEAICE_FGMRES_DRIVER( I uIceRes, vIceRes, U duIce, dvIce, iCode, I FGMRESeps, iOutFGMRES, I newtonIter, krylovIter, myTime, myIter, myThid ) C FGMRES returns iCode either asking for an new preconditioned vector C or product of matrix (Jacobian) times vector. For iCode = 0, terminate C iteration IF (iCode.EQ.1) THEN C Call preconditioner IF ( SOLV_MAX_ITERS .GT. 0 ) & CALL SEAICE_PRECONDITIONER( U duIce, dvIce, I zetaPre, etaPre, etaZpre, dwatPre, I newtonIter, krylovIter, myTime, myIter, myThid ) ELSEIF (iCode.GE.2) THEN C Compute Jacobian times vector CALL SEAICE_JACVEC( I uIce, vIce, uIceRes, vIceRes, U duIce, dvIce, I newtonIter, krylovIter, myTime, myIter, myThid ) ENDIF krylovConverged = iCode.EQ.0 C End of Krylov iterate ENDDO totalKrylovItersLoc = totalKrylovItersLoc + krylovIter C some output diagnostics IF ( debugLevel.GE.debLevA ) THEN _BEGIN_MASTER( myThid ) totalNewtonItersLoc = & SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') & ' S/R SEAICE_JFNK: Newton iterate / total, ', & 'JFNKgamma_lin, initial norm = ', & newtonIter, totalNewtonItersLoc, & JFNKgamma_lin,JFNKresidual CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(3(A,I6))') & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, & ' / ', totalNewtonItersLoc, & ', Nb. of FGMRES iterations = ', krylovIter CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) _END_MASTER( myThid ) ENDIF IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN krylovFails = krylovFails + 1 ENDIF C Set the stopping criterion for the Newton iteration and the C criterion for the transition from accurate to approximate FGMRES IF ( newtonIter .EQ. 1 ) THEN JFNKtol=JFNKgamma_nonlin*JFNKresidual IF ( JFNKres_tFac .NE. UNSET_RL ) & JFNKres_t = JFNKresidual * JFNKres_tFac ENDIF C Update linear solution vector and return to Newton iteration C Do a linesearch if necessary, and compute a new residual. C Note that it should be possible to do the following operations C at the beginning of the Newton iteration, thereby saving us from C the extra call of seaice_jfnk_update, but unfortunately that C changes the results, so we leave the stuff here for now. CALL SEAICE_JFNK_UPDATE( I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx duIce(I,J,bi,bj)= 0. _d 0 dvIce(I,J,bi,bj)= 0. _d 0 ENDDO ENDDO ENDDO ENDDO ENDIF C end of Newton iterate ENDDO C C-- Output diagnostics C IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN C Count iterations totalJFNKtimeSteps = totalJFNKtimeSteps + 1 totalNewtonIters = totalNewtonIters + newtonIter totalKrylovIters = totalKrylovIters + totalKrylovItersLoc C Record failure totalKrylovFails = totalKrylovFails + krylovFails IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN totalNewtonFails = totalNewtonFails + 1 ENDIF ENDIF C Decide whether it is time to dump and reset the counter writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, & myTime+deltaTClock, deltaTClock) #ifdef ALLOW_CAL IF ( useCAL ) THEN CALL CAL_TIME2DUMP( I zeroRL, SEAICE_monFreq, deltaTClock, U writeNow, I myTime+deltaTclock, myIter+1, myThid ) ENDIF #endif IF ( writeNow ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: time step = ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A,I10)') & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') ' // End JFNK statistics' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) WRITE(msgBuf,'(A)') &' // =======================================================' CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) _END_MASTER( myThid ) C reset and start again totalJFNKtimeSteps = 0 totalNewtonIters = 0 totalKrylovIters = 0 totalKrylovFails = 0 totalNewtonFails = 0 ENDIF C Print more debugging information IF ( debugLevel.GE.debLevA ) THEN IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A,I10)') & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', & myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) _END_MASTER( myThid ) ENDIF IF ( krylovFails .GT. 0 ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A,I4,A,I10)') & ' S/R SEAICE_JFNK: FGMRES did not converge ', & krylovFails, ' times in timestep ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) _END_MASTER( myThid ) ENDIF _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A,I6,A,I10)') & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', & totalKrylovItersLoc, ' in timestep ', myIter+1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) _END_MASTER( myThid ) ENDIF RETURN END C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| CBOP C !ROUTINE: SEAICE_JFNK_UPDATE C !INTERFACE: SUBROUTINE SEAICE_JFNK_UPDATE( I duIce, dvIce, U uIce, vIce, JFNKresidual, O uIceRes, vIceRes, I newtonIter, myTime, myIter, myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE SEAICE_JFNK_UPDATE C | o Update velocities with incremental solutions of FGMRES C | o compute residual of updated solutions and do C | o linesearch: C | reduce update until residual is smaller than previous C | one (input) C *==========================================================* C | written by Martin Losch, Jan 2013 C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "SEAICE_SIZE.h" #include "SEAICE_PARAMS.h" C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === C myTime :: Simulation time C myIter :: Simulation timestep number C myThid :: my Thread Id. number C newtonIter :: current iterate of Newton iteration _RL myTime INTEGER myIter INTEGER myThid INTEGER newtonIter C JFNKresidual :: Residual at the beginning of the FGMRES iteration, C changes with newtonIter (updated) _RL JFNKresidual C du/vIce :: ice velocity increment to be added to u/vIce (input) _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C u/vIce :: ice velocity increment to be added to u/vIce (updated) _RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C u/vIceRes :: residual of sea-ice momentum equations (output) _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C !LOCAL VARIABLES: C === Local variables === C i,j,bi,bj :: loop indices INTEGER i,j,bi,bj INTEGER l _RL resLoc, facLS LOGICAL doLineSearch C nVec :: size of the input vector(s) C vector version of the residuals INTEGER nVec PARAMETER ( nVec = 2*sNx*sNy ) _RL resTmp (nVec,1,nSx,nSy) C CHARACTER*(MAX_LEN_MBUF) msgBuf CEOP C Initialise some local variables l = 0 resLoc = JFNKresidual facLS = 1. _d 0 doLineSearch = .TRUE. DO WHILE ( doLineSearch ) C Determine, if we need more iterations doLineSearch = resLoc .GE. JFNKresidual C Limit the maximum number of iterations arbitrarily to four doLineSearch = doLineSearch .AND. l .LE. 4 C For the first iteration du/vIce = 0 and there will be no C improvement of the residual possible, so we do only the first C iteration IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. C Only start a linesearch after some Newton iterations IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. C Increment counter l = l + 1 C Create update DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) ENDDO ENDDO ENDDO ENDDO C Compute current residual F(u), (includes re-computation of global C variables DWATN, zeta, and eta, i.e. they are different after this) CALL SEAICE_CALC_RESIDUAL( I uIce, vIce, O uIceRes, vIceRes, I newtonIter, 0, myTime, myIter, myThid ) C Important: Compute the norm of the residual using the same scalar C product that SEAICE_FGMRES does CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) resLoc = SQRT(resLoc) C some output diagnostics IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') & ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', & 'facLS, JFNKresidual, resLoc = ', & newtonIter, l, facLS, JFNKresidual, resLoc CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, & SQUEEZE_RIGHT, myThid ) _END_MASTER( myThid ) ENDIF C Get ready for the next iteration: after adding du/vIce in the first C iteration, we substract 0.5*du/vIce from u/vIce in the next C iterations, 0.25*du/vIce in the second, etc. facLS = - 0.5 _d 0 * ABS(facLS) ENDDO C This is the new residual JFNKresidual = resLoc #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ RETURN END