/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Contents of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download)
Tue Nov 6 12:53:14 2012 UTC (12 years, 8 months ago) by mlosch
Branch: MAIN
Changes since 1.2: +4 -5 lines
move one exchange and remove a second one
improve counting of newton steps a little

1 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.2 2012/10/17 14:53:51 mlosch Exp $
2 C $Name: $
3
4 #include "SEAICE_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: SEAICE_JFNK
8 C !INTERFACE:
9 SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
10
11 C !DESCRIPTION: \bv
12 C *==========================================================*
13 C | SUBROUTINE SEAICE_JFKF
14 C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
15 C | following J.-F. Lemieux et al. Improving the numerical
16 C | convergence of viscous-plastic sea ice models with the
17 C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
18 C | 2840-2852 (2010).
19 C | o The logic follows JFs code.
20 C *==========================================================*
21 C | written by Martin Losch, Oct 2012
22 C *==========================================================*
23 C \ev
24
25 C !USES:
26 IMPLICIT NONE
27
28 C === Global variables ===
29 #include "SIZE.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "DYNVARS.h"
33 #include "GRID.h"
34 #include "SEAICE_SIZE.h"
35 #include "SEAICE_PARAMS.h"
36 #include "SEAICE.h"
37
38 #ifdef ALLOW_AUTODIFF_TAMC
39 # include "tamc.h"
40 #endif
41
42 C !INPUT/OUTPUT PARAMETERS:
43 C === Routine arguments ===
44 C myTime :: Simulation time
45 C myIter :: Simulation timestep number
46 C myThid :: my Thread Id. number
47 _RL myTime
48 INTEGER myIter
49 INTEGER myThid
50
51 #if ( (defined SEAICE_CGRID) && \
52 (defined SEAICE_ALLOW_JFNK) && \
53 (defined SEAICE_ALLOW_DYNAMICS) )
54
55 C i,j,bi,bj :: loop indices
56 INTEGER i,j,bi,bj
57 C loop indices
58 INTEGER newtonIter, newtonIterFail
59 INTEGER krylovIter, krylovIterFail
60 INTEGER totalKrylovIter
61 C FGMRES flag that indicates what to do next
62 INTEGER iCode
63 _RL JFNKresidual, JFNKresidualTile(nSx,nSy)
64 _RL JFNKresidualKm1
65 C parameters to compute convergence criterion
66 _RL phi_e, alp_e, JFNKgamma_lin
67 _RL FGMRESeps
68 _RL JFNKtol
69 C
70 _RL recip_deltaT
71 LOGICAL JFNKconverged, krylovConverged
72 CHARACTER*(MAX_LEN_MBUF) msgBuf
73 C
74 C u/vIceRes :: residual of sea-ice momentum equations
75 _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
76 _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
77 C du/vIce :: ice velocity increment to be added to u/vIce
78 _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
79 _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
80 C precomputed (= constant per Newton iteration) versions of
81 C zeta, eta, and DWATN, press
82 _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
83 _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
84 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
85 _RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
86 CEOP
87
88 C Initialise
89 newtonIter = 0
90 newtonIterFail = 0
91 krylovIterFail = 0
92 totalKrylovIter = 0
93 JFNKconverged = .FALSE.
94 JFNKtol = 0. _d 0
95 JFNKresidual = 0. _d 0
96 JFNKresidualKm1 = 0. _d 0
97 FGMRESeps = 0. _d 0
98 recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
99 C
100 DO bj=myByLo(myThid),myByHi(myThid)
101 DO bi=myBxLo(myThid),myBxHi(myThid)
102 DO J=1-Oly,sNy+Oly
103 DO I=1-Olx,sNx+Olx
104 uIceRes(I,J,bi,bj) = 0. _d 0
105 vIceRes(I,J,bi,bj) = 0. _d 0
106 duIce (I,J,bi,bj) = 0. _d 0
107 dvIce (I,J,bi,bj) = 0. _d 0
108 uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
109 vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
110 ENDDO
111 ENDDO
112 C Compute things that do no change during the Newton iteration:
113 C sea-surface tilt and wind stress:
114 C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT
115 DO J=1-Oly,sNy+Oly
116 DO I=1-Olx,sNx+Olx
117 FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
118 & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT
119 FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
120 & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT
121 ENDDO
122 ENDDO
123 ENDDO
124 ENDDO
125 C Start nonlinear Newton iteration: outer loop iteration
126 DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.
127 & .NOT.JFNKconverged )
128 newtonIter = newtonIter + 1
129 C Compute initial residual F(u), (includes computation of global
130 C variables DWATN, zeta, and eta)
131 CALL SEAICE_CALC_RESIDUAL(
132 I uIce, vIce,
133 O uIceRes, vIceRes,
134 I newtonIter, 0, myTime, myIter, myThid )
135 CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)
136 C local copies of precomputed coefficients that are to stay
137 C constant for the preconditioner
138 DO bj=myByLo(myThid),myByHi(myThid)
139 DO bi=myBxLo(myThid),myBxHi(myThid)
140 DO j=1-Oly,sNy+Oly
141 DO i=1-Olx,sNx+Olx
142 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
143 etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
144 dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
145 pressPre(I,J,bi,bj) = press(I,J,bi,bj)
146 ENDDO
147 ENDDO
148 ENDDO
149 ENDDO
150 C
151 DO bj=myByLo(myThid),myByHi(myThid)
152 DO bi=myBxLo(myThid),myBxHi(myThid)
153 JFNKresidualTile(bi,bj) = 0. _d 0
154 DO J=1,sNy
155 DO I=1,sNx
156 #ifdef CG2D_SINGLECPU_SUM
157 JFNKlocalBuf(I,J,bi,bj) =
158 #else
159 JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +
160 #endif
161 & uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +
162 & vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)
163 ENDDO
164 ENDDO
165 ENDDO
166 ENDDO
167 JFNKresidual = 0. _d 0
168 #ifdef CG2D_SINGLECPU_SUM
169 CALL GLOBAL_SUM_SINGLECPU_RL(
170 & JFNKlocalBuf,JFNKresidual, 0, 0, myThid)
171 #else
172 CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )
173 #endif
174 JFNKresidual = SQRT(JFNKresidual)
175 C compute convergence criterion for linear preconditioned FGMRES
176 JFNKgamma_lin = JFNKgamma_lin_max
177 IF ( newtonIter.GT.1.AND.newtonIter.LE.100
178 & .AND.JFNKresidual.LT.JFNKres_t ) THEN
179 C Eisenstat, 1996, equ.(2.6)
180 phi_e = 1. _d 0
181 alp_e = 1. _d 0
182 JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e
183 JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
184 JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
185 ENDIF
186 C save the residual for the next iteration
187 JFNKresidualKm1 = JFNKresidual
188 C
189 C The Krylov iteration using FGMRES, the preconditioner is LSOR
190 C for now. The code is adapted from SEAICE_LSR, but heavily stripped
191 C down.
192 C krylovIter is mapped into "its" in seaice_fgmres and is incremented
193 C in that routine
194 krylovIter = 0
195 iCode = 0
196 IF ( debugLevel.GE.debLevA ) THEN
197 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
198 & ' S/R SEAICE_JFNK: newtonIter,',
199 & ' total newtonIter, JFNKgamma_lin, initial norm = ',
200 & newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
201 & JFNKgamma_lin, JFNKresidual
202 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
203 & SQUEEZE_RIGHT, myThid )
204 ENDIF
205 C
206 JFNKconverged = JFNKresidual.LT.JFNKtol
207 C
208 C do Krylov loop only if convergence is not reached
209 C
210 IF ( .NOT.JFNKconverged ) THEN
211 C
212 C start Krylov iteration (FGMRES)
213 C
214 krylovConverged = .FALSE.
215 FGMRESeps = JFNKgamma_lin * JFNKresidual
216 DO WHILE ( .NOT.krylovConverged )
217 C solution vector sol = du/vIce
218 C residual vector (rhs) Fu = u/vIceRes
219 C output work vectors wk1, -> input work vector wk2
220 C
221 CALL SEAICE_FGMRES_DRIVER(
222 I uIceRes, vIceRes,
223 U duIce, dvIce, iCode,
224 I FGMRESeps,
225 I newtonIter, krylovIter, myTime, myIter, myThid )
226 C FGMRES returns iCode either asking for an new preconditioned vector
227 C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
228 C iteration
229 IF (iCode.EQ.1) THEN
230 C Call preconditioner
231 CALL SEAICE_PRECONDITIONER(
232 U duIce, dvIce,
233 I zetaPre, etaPre, dwatPre, pressPre,
234 I newtonIter, krylovIter, myTime, myIter, myThid )
235 ELSEIF (iCode.GE.2) THEN
236 C Compute Jacobian times vector
237 CALL SEAICE_JACVEC(
238 I uIce, vIce, uIceRes, vIceRes,
239 U duIce, dvIce,
240 I newtonIter, krylovIter, myTime, myIter, myThid )
241 ENDIF
242 krylovConverged = iCode.EQ.0
243 C End of Krylov iterate
244 ENDDO
245 totalKrylovIter = totalKrylovIter + krylovIter
246 C some output diagnostics
247 IF ( debugLevel.GE.debLevA ) THEN
248 WRITE(msgBuf,'(3(A,I6))')
249 & ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,
250 & ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
251 & ', Nb. of FGMRES iterations = ', krylovIter
252 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
253 & SQUEEZE_RIGHT, myThid )
254 ENDIF
255 IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
256 krylovIterFail = krylovIterFail + 1
257 ENDIF
258 C Update linear solution vector and return to Newton iteration
259 DO bj=myByLo(myThid),myByHi(myThid)
260 DO bi=myBxLo(myThid),myBxHi(myThid)
261 DO J=1-Oly,sNy+Oly
262 DO I=1-Olx,sNx+Olx
263 uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)
264 vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)
265 ENDDO
266 ENDDO
267 ENDDO
268 ENDDO
269 C Set the stopping criterion for the Newton iteration
270 IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual
271 ENDIF
272 C end of Newton iterate
273 ENDDO
274 C some output diagnostics
275 IF ( debugLevel.GE.debLevA ) THEN
276 C Record failure
277 IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
278 newtonIterFail = newtonIterFail + 1
279 WRITE(msgBuf,'(A,I10)')
280 & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
281 & myIter
282 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
283 & SQUEEZE_RIGHT, myThid )
284 ENDIF
285 IF ( krylovIterFail .GT. 0 ) THEN
286 WRITE(msgBuf,'(A,I4,A,I10)')
287 & ' S/R SEAICE_JFNK: FGMRES did not converge ',
288 & krylovIterFail, ' times in timestep ', myIter
289 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
290 & SQUEEZE_RIGHT, myThid )
291 ENDIF
292 WRITE(msgBuf,'(A,I6)')
293 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
294 & totalKrylovIter
295 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
296 & SQUEEZE_RIGHT, myThid )
297
298 ENDIF
299
300 #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */
301
302 RETURN
303 END

  ViewVC Help
Powered by ViewVC 1.1.22