/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Diff of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by mlosch, Wed Nov 7 09:56:23 2012 UTC revision 1.20 by jmc, Sat Mar 2 04:35:05 2013 UTC
# Line 3  C $Name$ Line 3  C $Name$
3    
4  #include "SEAICE_OPTIONS.h"  #include "SEAICE_OPTIONS.h"
5    
6    C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
7    C--   Contents
8    C--   o SEAICE_JFNK
9    C--   o SEAICE_JFNK_UPDATE
10    
11  CBOP  CBOP
12  C     !ROUTINE: SEAICE_JFNK  C     !ROUTINE: SEAICE_JFNK
13  C     !INTERFACE:  C     !INTERFACE:
# Line 10  C     !INTERFACE: Line 15  C     !INTERFACE:
15    
16  C     !DESCRIPTION: \bv  C     !DESCRIPTION: \bv
17  C     *==========================================================*  C     *==========================================================*
18  C     | SUBROUTINE SEAICE_JFKF  C     | SUBROUTINE SEAICE_JFNK
19  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver
20  C     |   following J.-F. Lemieux et al. Improving the numerical  C     |   following J.-F. Lemieux et al. Improving the numerical
21  C     |   convergence of viscous-plastic sea ice models with the  C     |   convergence of viscous-plastic sea ice models with the
# Line 55  C     !FUNCTIONS: Line 60  C     !FUNCTIONS:
60        LOGICAL  DIFFERENT_MULTIPLE        LOGICAL  DIFFERENT_MULTIPLE
61        EXTERNAL DIFFERENT_MULTIPLE        EXTERNAL DIFFERENT_MULTIPLE
62    
63    C     !LOCAL VARIABLES:
64    C     === Local variables ===
65  C     i,j,bi,bj :: loop indices  C     i,j,bi,bj :: loop indices
66        INTEGER i,j,bi,bj        INTEGER i,j,bi,bj
67  C     loop indices  C     loop indices
68        INTEGER newtonIter        INTEGER newtonIter
69        INTEGER krylovIter, krylovFails        INTEGER krylovIter, krylovFails
70        INTEGER totalKrylovItersLoc        INTEGER totalKrylovItersLoc, totalNewtonItersLoc
71  C     FGMRES flag that determines amount of output messages of fgmres  C     FGMRES flag that determines amount of output messages of fgmres
72        INTEGER iOutFGMRES        INTEGER iOutFGMRES
73  C     FGMRES flag that indicates what fgmres wants us to do next  C     FGMRES flag that indicates what fgmres wants us to do next
74        INTEGER iCode        INTEGER iCode
75        _RL     JFNKresidual, JFNKresidualTile(nSx,nSy)        _RL     JFNKresidual
76        _RL     JFNKresidualKm1        _RL     JFNKresidualKm1
77  C     parameters to compute convergence criterion  C     parameters to compute convergence criterion
78        _RL     phi_e, alp_e, JFNKgamma_lin        _RL     phi_e, alp_e, JFNKgamma_lin
79        _RL     FGMRESeps        _RL     FGMRESeps
80        _RL     JFNKtol        _RL     JFNKtol
81  C      
82        _RL     recip_deltaT        _RL     recip_deltaT
83        LOGICAL JFNKconverged, krylovConverged        LOGICAL JFNKconverged, krylovConverged
84          LOGICAL writeNow
85        CHARACTER*(MAX_LEN_MBUF) msgBuf        CHARACTER*(MAX_LEN_MBUF) msgBuf
86  C  
87  C     u/vIceRes :: residual of sea-ice momentum equations  C     u/vIceRes :: residual of sea-ice momentum equations
88        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
89        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
90  C     du/vIce   :: ice velocity increment to be added to u/vIce  C     du/vIce   :: ice velocity increment to be added to u/vIce
91        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
92        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
93  C     precomputed (= constant per Newton iteration) versions of  C     precomputed (= constant per Newton iteration) versions of
94  C     zeta, eta, and DWATN, press  C     zeta, eta, and DWATN, press
95        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
96        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
97          _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
98        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
       _RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)  
99  CEOP  CEOP
100    
101  C     Initialise  C     Initialise
# Line 102  C     Initialise Line 110  C     Initialise
110        recip_deltaT        = 1. _d 0 / SEAICE_deltaTdyn        recip_deltaT        = 1. _d 0 / SEAICE_deltaTdyn
111    
112        iOutFGMRES=0        iOutFGMRES=0
113  C     iOutFgmres=1 gives a little bit of output  C     with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
114        IF ( debugLevel.GE.debLevA .AND.        IF ( debugLevel.GE.debLevC .AND.
115       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
116       &     iOutFGMRES=1       &     iOutFGMRES=1
117    
 C      
118        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
119         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
120          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
121           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
122            uIceRes(I,J,bi,bj) = 0. _d 0            uIceRes(I,J,bi,bj) = 0. _d 0
123            vIceRes(I,J,bi,bj) = 0. _d 0            vIceRes(I,J,bi,bj) = 0. _d 0
124            duIce  (I,J,bi,bj) = 0. _d 0            duIce  (I,J,bi,bj) = 0. _d 0
# Line 121  C Line 128  C
128           ENDDO           ENDDO
129          ENDDO          ENDDO
130  C     Compute things that do no change during the Newton iteration:  C     Compute things that do no change during the Newton iteration:
131  C     sea-surface tilt and wind stress:  C     sea-surface tilt and wind stress:
132  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT
133          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
134           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
135            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
136       &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT
137            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
138       &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT
139           ENDDO           ENDDO
140          ENDDO          ENDDO
141         ENDDO         ENDDO
# Line 139  C     Start nonlinear Newton iteration: Line 146  C     Start nonlinear Newton iteration:
146         newtonIter = newtonIter + 1         newtonIter = newtonIter + 1
147  C     Compute initial residual F(u), (includes computation of global  C     Compute initial residual F(u), (includes computation of global
148  C     variables DWATN, zeta, and eta)  C     variables DWATN, zeta, and eta)
149         CALL SEAICE_CALC_RESIDUAL(         IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
150       I      uIce, vIce,       I      duIce, dvIce,
151       O      uIceRes, vIceRes,       U      uIce, vIce, JFNKresidual,
152       I      newtonIter, 0, myTime, myIter, myThid )       O      uIceRes, vIceRes,
153         CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)       I      newtonIter, myTime, myIter, myThid )
154  C     local copies of precomputed coefficients that are to stay  C     local copies of precomputed coefficients that are to stay
155  C     constant for the preconditioner  C     constant for the preconditioner
156         DO bj=myByLo(myThid),myByHi(myThid)         DO bj=myByLo(myThid),myByHi(myThid)
157          DO bi=myBxLo(myThid),myBxHi(myThid)          DO bi=myBxLo(myThid),myBxHi(myThid)
158           DO j=1-Oly,sNy+Oly           DO j=1-OLy,sNy+OLy
159            DO i=1-Olx,sNx+Olx            DO i=1-OLx,sNx+OLx
160              zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)
161               etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)
162              dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)
163             pressPre(I,J,bi,bj) = press(I,J,bi,bj)             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
           ENDDO  
          ENDDO  
         ENDDO  
        ENDDO  
 C      
        DO bj=myByLo(myThid),myByHi(myThid)  
         DO bi=myBxLo(myThid),myBxHi(myThid)  
          JFNKresidualTile(bi,bj) = 0. _d 0  
          DO J=1,sNy  
           DO I=1,sNx  
 #ifdef CG2D_SINGLECPU_SUM  
            JFNKlocalBuf(I,J,bi,bj) =  
 #else  
            JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +  
 #endif  
      &          uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +  
      &          vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)  
164            ENDDO            ENDDO
165           ENDDO           ENDDO
166          ENDDO          ENDDO
167         ENDDO         ENDDO
        JFNKresidual = 0. _d 0  
 #ifdef CG2D_SINGLECPU_SUM  
        CALL GLOBAL_SUM_SINGLECPU_RL(  
      &         JFNKlocalBuf,JFNKresidual, 0, 0, myThid)  
 #else  
        CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )  
 #endif  
        JFNKresidual = SQRT(JFNKresidual)  
168  C     compute convergence criterion for linear preconditioned FGMRES  C     compute convergence criterion for linear preconditioned FGMRES
169         JFNKgamma_lin = JFNKgamma_lin_max         JFNKgamma_lin = JFNKgamma_lin_max
170         IF ( newtonIter.GT.1.AND.newtonIter.LE.100         IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
171       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN
172  C     Eisenstat, 1996, equ.(2.6)        C     Eisenstat, 1996, equ.(2.6)
173          phi_e = 1. _d 0          phi_e = 1. _d 0
174          alp_e = 1. _d 0          alp_e = 1. _d 0
175          JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e          JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e
# Line 196  C     Eisenstat, 1996, equ.(2.6) Line 178  C     Eisenstat, 1996, equ.(2.6)
178         ENDIF         ENDIF
179  C     save the residual for the next iteration  C     save the residual for the next iteration
180         JFNKresidualKm1 = JFNKresidual         JFNKresidualKm1 = JFNKresidual
181  C  
182  C     The Krylov iteration using FGMRES, the preconditioner is LSOR  C     The Krylov iteration using FGMRES, the preconditioner is LSOR
183  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped
184  C     down.  C     down.
# Line 204  C     krylovIter is mapped into "its" in Line 186  C     krylovIter is mapped into "its" in
186  C     in that routine  C     in that routine
187         krylovIter    = 0         krylovIter    = 0
188         iCode         = 0         iCode         = 0
189         IF ( debugLevel.GE.debLevA ) THEN    
         _BEGIN_MASTER( myThid )  
         WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')  
      &       ' S/R SEAICE_JFNK: newtonIter,',  
      &       ' total newtonIter, JFNKgamma_lin, initial norm = ',  
      &       newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,  
      &       JFNKgamma_lin, JFNKresidual  
         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,  
      &       SQUEEZE_RIGHT, myThid )  
         _END_MASTER( myThid )  
        ENDIF  
 C  
190         JFNKconverged = JFNKresidual.LT.JFNKtol         JFNKconverged = JFNKresidual.LT.JFNKtol
191  C  
192  C     do Krylov loop only if convergence is not reached  C     do Krylov loop only if convergence is not reached
193  C  
194         IF ( .NOT.JFNKconverged ) THEN         IF ( .NOT.JFNKconverged ) THEN
195  C  
196  C     start Krylov iteration (FGMRES)  C     start Krylov iteration (FGMRES)
197  C  
198          krylovConverged = .FALSE.          krylovConverged = .FALSE.
199          FGMRESeps = JFNKgamma_lin * JFNKresidual          FGMRESeps = JFNKgamma_lin * JFNKresidual
200          DO WHILE ( .NOT.krylovConverged )          DO WHILE ( .NOT.krylovConverged )
201  C     solution vector sol = du/vIce  C     solution vector sol = du/vIce
202  C     residual vector (rhs) Fu = u/vIceRes  C     residual vector (rhs) Fu = u/vIceRes
203  C     output work vectors wk1, -> input work vector wk2  C     output work vectors wk1, -> input work vector wk2
204  C      
205           CALL SEAICE_FGMRES_DRIVER(           CALL SEAICE_FGMRES_DRIVER(
206       I        uIceRes, vIceRes,       I        uIceRes, vIceRes,
207       U        duIce, dvIce, iCode,       U        duIce, dvIce, iCode,
208       I        FGMRESeps, iOutFGMRES,       I        FGMRESeps, iOutFGMRES,
209       I        newtonIter, krylovIter, myTime, myIter, myThid )       I        newtonIter, krylovIter, myTime, myIter, myThid )
# Line 241  C     or product of matrix (Jacobian) ti Line 212  C     or product of matrix (Jacobian) ti
212  C     iteration  C     iteration
213           IF (iCode.EQ.1) THEN           IF (iCode.EQ.1) THEN
214  C     Call preconditioner  C     Call preconditioner
215            CALL SEAICE_PRECONDITIONER(            IF ( SOLV_MAX_ITERS .GT. 0 )
216       U         duIce, dvIce,       &         CALL SEAICE_PRECONDITIONER(
217       I         zetaPre, etaPre, dwatPre, pressPre,       U         duIce, dvIce,
218         I         zetaPre, etaPre, etaZpre, dwatPre,
219       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
220           ELSEIF (iCode.GE.2) THEN           ELSEIF (iCode.GE.2) THEN
221  C     Compute Jacobian times vector  C     Compute Jacobian times vector
222            CALL SEAICE_JACVEC(            CALL SEAICE_JACVEC(
223       I         uIce, vIce, uIceRes, vIceRes,       I         uIce, vIce, uIceRes, vIceRes,
224       U         duIce, dvIce,         U         duIce, dvIce,
225       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
226           ENDIF           ENDIF
227           krylovConverged = iCode.EQ.0           krylovConverged = iCode.EQ.0
# Line 259  C     End of Krylov iterate Line 231  C     End of Krylov iterate
231  C     some output diagnostics  C     some output diagnostics
232          IF ( debugLevel.GE.debLevA ) THEN          IF ( debugLevel.GE.debLevA ) THEN
233           _BEGIN_MASTER( myThid )           _BEGIN_MASTER( myThid )
234             totalNewtonItersLoc =
235         &        SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter
236             WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
237         &        ' S/R SEAICE_JFNK: Newton iterate / total, ',
238         &        'JFNKgamma_lin, initial norm = ',
239         &        newtonIter, totalNewtonItersLoc,
240         &        JFNKgamma_lin,JFNKresidual
241             CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
242         &        SQUEEZE_RIGHT, myThid )
243           WRITE(msgBuf,'(3(A,I6))')           WRITE(msgBuf,'(3(A,I6))')
244       &        ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,       &        ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
245       &        ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,       &        ' / ', totalNewtonItersLoc,
246       &        ', Nb. of FGMRES iterations = ', krylovIter       &        ', Nb. of FGMRES iterations = ', krylovIter
247           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
248       &        SQUEEZE_RIGHT, myThid )       &        SQUEEZE_RIGHT, myThid )
# Line 270  C     some output diagnostics Line 251  C     some output diagnostics
251          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
252           krylovFails = krylovFails + 1           krylovFails = krylovFails + 1
253          ENDIF          ENDIF
254    C     Set the stopping criterion for the Newton iteration and the
255    C     criterion for the transition from accurate to approximate FGMRES
256            IF ( newtonIter .EQ. 1 ) THEN
257             JFNKtol=JFNKgamma_nonlin*JFNKresidual
258             IF ( JFNKres_tFac .NE. UNSET_RL )
259         &        JFNKres_t = JFNKresidual * JFNKres_tFac
260            ENDIF
261  C     Update linear solution vector and return to Newton iteration  C     Update linear solution vector and return to Newton iteration
262    C     Do a linesearch if necessary, and compute a new residual.
263    C     Note that it should be possible to do the following operations
264    C     at the beginning of the Newton iteration, thereby saving us from
265    C     the extra call of seaice_jfnk_update, but unfortunately that
266    C     changes the results, so we leave the stuff here for now.
267            CALL SEAICE_JFNK_UPDATE(
268         I       duIce, dvIce,
269         U       uIce, vIce, JFNKresidual,
270         O       uIceRes, vIceRes,
271         I       newtonIter, myTime, myIter, myThid )
272    C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
273          DO bj=myByLo(myThid),myByHi(myThid)          DO bj=myByLo(myThid),myByHi(myThid)
274           DO bi=myBxLo(myThid),myBxHi(myThid)           DO bi=myBxLo(myThid),myBxHi(myThid)
275            DO J=1-Oly,sNy+Oly            DO J=1-OLy,sNy+OLy
276             DO I=1-Olx,sNx+Olx             DO I=1-OLx,sNx+OLx
             uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)  
             vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)  
 C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver  
277              duIce(I,J,bi,bj)= 0. _d 0              duIce(I,J,bi,bj)= 0. _d 0
278              dvIce(I,J,bi,bj)= 0. _d 0              dvIce(I,J,bi,bj)= 0. _d 0
279             ENDDO             ENDDO
280            ENDDO            ENDDO
281           ENDDO           ENDDO
282          ENDDO          ENDDO
 C     Set the stopping criterion for the Newton iteration  
         IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual  
283         ENDIF         ENDIF
284  C     end of Newton iterate  C     end of Newton iterate
285        ENDDO        ENDDO
286  C  
287  C--   Output diagnostics  C--   Output diagnostics
288  C  
289          IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
290  C     Count iterations  C     Count iterations
291        totalJFNKtimeSteps = totalJFNKtimeSteps + 1         totalJFNKtimeSteps = totalJFNKtimeSteps + 1
292        totalNewtonIters   = totalNewtonIters + newtonIter         totalNewtonIters   = totalNewtonIters + newtonIter
293        totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc         totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc
294  C     Record failure  C     Record failure
295        totalKrylovFails   = totalKrylovFails + krylovFails         totalKrylovFails   = totalKrylovFails + krylovFails
296        IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
297         totalNewtonFails = totalNewtonFails + 1          totalNewtonFails = totalNewtonFails + 1
298           ENDIF
299        ENDIF        ENDIF
300  C     Decide whether it is time to dump and reset the counter  C     Decide whether it is time to dump and reset the counter
301        IF ( DIFFERENT_MULTIPLE(SEAICE_monFreq,myTime+deltaTClock,        writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
302       &     deltaTClock) ) THEN       &     myTime+deltaTClock, deltaTClock)
303    #ifdef ALLOW_CAL
304          IF ( useCAL ) THEN
305           CALL CAL_TIME2DUMP(
306         I      zeroRL, SEAICE_monFreq,  deltaTClock,
307         U      writeNow,
308         I      myTime+deltaTclock, myIter+1, myThid )
309          ENDIF
310    #endif
311          IF ( writeNow ) THEN
312         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
313         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
314       &' // ======================================================='       &' // ======================================================='
315         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
316       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
317         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
318         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
319       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
320         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
321       &' // ======================================================='       &' // ======================================================='
322         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
323       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
324         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
325       &      ' %JFNK_MON: time step              = ', myIter+1       &      ' %JFNK_MON: time step              = ', myIter+1
326         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
327       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
328         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
329       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps
330         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
331       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
332         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
333       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters
334         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
335       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
336         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
337       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters
338         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
339       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
340         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
341       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
342         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
343       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
344         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
345       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
346         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
347       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
348         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
349       &' // ======================================================='       &' // ======================================================='
350         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
351       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
352         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'         WRITE(msgBuf,'(A)') ' // End JFNK statistics'
353         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
354       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
355         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
356       &' // ======================================================='       &' // ======================================================='
357         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
358       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
# Line 364  C     Print more debugging information Line 369  C     Print more debugging information
369        IF ( debugLevel.GE.debLevA ) THEN        IF ( debugLevel.GE.debLevA ) THEN
370         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
371          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
372          WRITE(msgBuf,'(A,I10)')          WRITE(msgBuf,'(A,I10)')
373       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
374       &       myIter+1       &       myIter+1
375          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 373  C     Print more debugging information Line 378  C     Print more debugging information
378         ENDIF         ENDIF
379         IF ( krylovFails .GT. 0 ) THEN         IF ( krylovFails .GT. 0 ) THEN
380          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
381          WRITE(msgBuf,'(A,I4,A,I10)')          WRITE(msgBuf,'(A,I4,A,I10)')
382       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',
383       &       krylovFails, ' times in timestep ', myIter+1       &       krylovFails, ' times in timestep ', myIter+1
384          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 381  C     Print more debugging information Line 386  C     Print more debugging information
386          _END_MASTER( myThid )          _END_MASTER( myThid )
387         ENDIF         ENDIF
388         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
389         WRITE(msgBuf,'(A,I6,A,I10)')         WRITE(msgBuf,'(A,I6,A,I10)')
390       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
391       &      totalKrylovItersLoc, ' in timestep ', myIter+1       &      totalKrylovItersLoc, ' in timestep ', myIter+1
392         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 389  C     Print more debugging information Line 394  C     Print more debugging information
394         _END_MASTER( myThid )         _END_MASTER( myThid )
395        ENDIF        ENDIF
396    
397          RETURN
398          END
399    
400    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
401    CBOP
402    C     !ROUTINE: SEAICE_JFNK_UPDATE
403    C     !INTERFACE:
404    
405          SUBROUTINE SEAICE_JFNK_UPDATE(
406         I     duIce, dvIce,
407         U     uIce, vIce, JFNKresidual,
408         O     uIceRes, vIceRes,
409         I     newtonIter, myTime, myIter, myThid )
410    
411    C     !DESCRIPTION: \bv
412    C     *==========================================================*
413    C     | SUBROUTINE SEAICE_JFNK_UPDATE
414    C     | o Update velocities with incremental solutions of FGMRES
415    C     | o compute residual of updated solutions and do
416    C     | o linesearch:
417    C     |   reduce update until residual is smaller than previous
418    C     |   one (input)
419    C     *==========================================================*
420    C     | written by Martin Losch, Jan 2013
421    C     *==========================================================*
422    C     \ev
423    
424    C     !USES:
425          IMPLICIT NONE
426    
427    C     === Global variables ===
428    #include "SIZE.h"
429    #include "EEPARAMS.h"
430    #include "PARAMS.h"
431    #include "SEAICE_SIZE.h"
432    #include "SEAICE_PARAMS.h"
433    
434    C     !INPUT/OUTPUT PARAMETERS:
435    C     === Routine arguments ===
436    C     myTime :: Simulation time
437    C     myIter :: Simulation timestep number
438    C     myThid :: my Thread Id. number
439    C     newtonIter :: current iterate of Newton iteration
440          _RL     myTime
441          INTEGER myIter
442          INTEGER myThid
443          INTEGER newtonIter
444    C     JFNKresidual :: Residual at the beginning of the FGMRES iteration,
445    C                     changes with newtonIter (updated)
446          _RL     JFNKresidual
447    C     du/vIce   :: ice velocity increment to be added to u/vIce (input)
448          _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
449          _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
450    C     u/vIce    :: ice velocity increment to be added to u/vIce (updated)
451          _RL uIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
452          _RL vIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
453    C     u/vIceRes :: residual of sea-ice momentum equations (output)
454          _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
455          _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
456    
457    C     !LOCAL VARIABLES:
458    C     === Local variables ===
459    C     i,j,bi,bj :: loop indices
460          INTEGER i,j,bi,bj
461          INTEGER l
462          _RL     resLoc, facLS
463          LOGICAL doLineSearch
464    C     nVec    :: size of the input vector(s)
465    C     resTmp  :: vector version of the residuals
466          INTEGER nVec
467          PARAMETER ( nVec  = 2*sNx*sNy )
468          _RL resTmp (nVec,1,nSx,nSy)
469    
470          CHARACTER*(MAX_LEN_MBUF) msgBuf
471    CEOP
472    
473    C     Initialise some local variables
474          l = 0
475          resLoc = JFNKresidual
476          facLS = 1. _d 0
477          doLineSearch = .TRUE.
478          DO WHILE ( doLineSearch )
479    C     Create update
480           DO bj=myByLo(myThid),myByHi(myThid)
481            DO bi=myBxLo(myThid),myBxHi(myThid)
482             DO J=1-OLy,sNy+OLy
483              DO I=1-OLx,sNx+OLx
484               uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
485               vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
486              ENDDO
487             ENDDO
488            ENDDO
489           ENDDO
490    C     Compute current residual F(u), (includes re-computation of global
491    C     variables DWATN, zeta, and eta, i.e. they are different after this)
492           CALL SEAICE_CALC_RESIDUAL(
493         I      uIce, vIce,
494         O      uIceRes, vIceRes,
495         I      newtonIter, 0, myTime, myIter, myThid )
496    C     Important: Compute the norm of the residual using the same scalar
497    C     product that SEAICE_FGMRES does
498           CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
499           CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
500           resLoc = SQRT(resLoc)
501    C     Determine, if we need more iterations
502           doLineSearch = resLoc .GE. JFNKresidual
503    C     Limit the maximum number of iterations arbitrarily to four
504           doLineSearch = doLineSearch .AND. l .LT. 4
505    C     For the first iteration du/vIce = 0 and there will be no
506    C     improvement of the residual possible, so we do only the first
507    C     iteration
508           IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
509    C     Only start a linesearch after some Newton iterations
510           IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
511    C     Increment counter
512           l = l + 1
513    C     some output diagnostics
514           IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
515            _BEGIN_MASTER( myThid )
516            WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
517         &       ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
518         &       'facLS, JFNKresidual, resLoc = ',
519         &        newtonIter, l, facLS, JFNKresidual, resLoc
520            CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
521         &       SQUEEZE_RIGHT, myThid )
522            _END_MASTER( myThid )
523           ENDIF
524    C     Get ready for the next iteration: after adding du/vIce in the first
525    C     iteration, we substract 0.5*du/vIce from u/vIce in the next
526    C     iterations, 0.25*du/vIce in the second, etc.
527           facLS = - 0.5 _d 0 * ABS(facLS)
528          ENDDO
529    C     This is the new residual
530          JFNKresidual = resLoc
531    
532  #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */  #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */
533    
534        RETURN        RETURN

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.20

  ViewVC Help
Powered by ViewVC 1.1.22