/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Diff of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by mlosch, Tue Nov 6 12:53:14 2012 UTC revision 1.25 by mlosch, Fri Feb 7 14:27:21 2014 UTC
# Line 3  C $Name$ Line 3  C $Name$
3    
4  #include "SEAICE_OPTIONS.h"  #include "SEAICE_OPTIONS.h"
5    
6    C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
7    C--   Contents
8    C--   o SEAICE_JFNK
9    C--   o SEAICE_JFNK_UPDATE
10    
11  CBOP  CBOP
12  C     !ROUTINE: SEAICE_JFNK  C     !ROUTINE: SEAICE_JFNK
13  C     !INTERFACE:  C     !INTERFACE:
# Line 10  C     !INTERFACE: Line 15  C     !INTERFACE:
15    
16  C     !DESCRIPTION: \bv  C     !DESCRIPTION: \bv
17  C     *==========================================================*  C     *==========================================================*
18  C     | SUBROUTINE SEAICE_JFKF  C     | SUBROUTINE SEAICE_JFNK
19  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver
20  C     |   following J.-F. Lemieux et al. Improving the numerical  C     |   following J.-F. Lemieux et al. Improving the numerical
21  C     |   convergence of viscous-plastic sea ice models with the  C     |   convergence of viscous-plastic sea ice models with the
# Line 48  C     myThid :: my Thread Id. number Line 53  C     myThid :: my Thread Id. number
53        INTEGER myIter        INTEGER myIter
54        INTEGER myThid        INTEGER myThid
55    
56  #if ( (defined SEAICE_CGRID) && \  #ifdef SEAICE_ALLOW_JFNK
57        (defined SEAICE_ALLOW_JFNK) && \  C     !FUNCTIONS:
58        (defined SEAICE_ALLOW_DYNAMICS) )        LOGICAL  DIFFERENT_MULTIPLE
59          EXTERNAL DIFFERENT_MULTIPLE
60    
61    C     !LOCAL VARIABLES:
62    C     === Local variables ===
63  C     i,j,bi,bj :: loop indices  C     i,j,bi,bj :: loop indices
64        INTEGER i,j,bi,bj        INTEGER i,j,bi,bj
65  C     loop indices  C     loop indices
66        INTEGER newtonIter, newtonIterFail        INTEGER newtonIter
67        INTEGER krylovIter, krylovIterFail        INTEGER krylovIter, krylovFails
68        INTEGER totalKrylovIter        INTEGER totalKrylovItersLoc, totalNewtonItersLoc
69  C     FGMRES flag that indicates what to do next  C     FGMRES flag that determines amount of output messages of fgmres
70          INTEGER iOutFGMRES
71    C     FGMRES flag that indicates what fgmres wants us to do next
72        INTEGER iCode        INTEGER iCode
73        _RL     JFNKresidual, JFNKresidualTile(nSx,nSy)        _RL     JFNKresidual
74        _RL     JFNKresidualKm1        _RL     JFNKresidualKm1
75  C     parameters to compute convergence criterion  C     parameters to compute convergence criterion
76        _RL     phi_e, alp_e, JFNKgamma_lin        _RL     JFNKgamma_lin
77        _RL     FGMRESeps        _RL     FGMRESeps
78        _RL     JFNKtol        _RL     JFNKtol
79  C      C     backward differences extrapolation factors
80          _RL bdfFac, bdfAlpha
81    C
82        _RL     recip_deltaT        _RL     recip_deltaT
83        LOGICAL JFNKconverged, krylovConverged        LOGICAL JFNKconverged, krylovConverged
84          LOGICAL writeNow
85        CHARACTER*(MAX_LEN_MBUF) msgBuf        CHARACTER*(MAX_LEN_MBUF) msgBuf
86  C  
87  C     u/vIceRes :: residual of sea-ice momentum equations  C     u/vIceRes :: residual of sea-ice momentum equations
88        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
89        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
90    C     extra time level required for backward difference time stepping
91          _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
92          _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
93  C     du/vIce   :: ice velocity increment to be added to u/vIce  C     du/vIce   :: ice velocity increment to be added to u/vIce
94        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
95        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
96  C     precomputed (= constant per Newton iteration) versions of  C     precomputed (= constant per Newton iteration) versions of
97  C     zeta, eta, and DWATN, press  C     zeta, eta, and DWATN, press
98        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
99        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
100          _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
101        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
       _RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)  
102  CEOP  CEOP
103    
104  C     Initialise  C     Initialise
105        newtonIter      = 0        newtonIter          = 0
106        newtonIterFail  = 0        krylovFails         = 0
107        krylovIterFail  = 0        totalKrylovItersLoc = 0
108        totalKrylovIter = 0        JFNKconverged       = .FALSE.
109        JFNKconverged   = .FALSE.        JFNKtol             = 0. _d 0
110        JFNKtol         = 0. _d 0        JFNKresidual        = 0. _d 0
111        JFNKresidual    = 0. _d 0        JFNKresidualKm1     = 0. _d 0
112        JFNKresidualKm1 = 0. _d 0        FGMRESeps           = 0. _d 0
113        FGMRESeps       = 0. _d 0        recip_deltaT        = 1. _d 0 / SEAICE_deltaTdyn
114        recip_deltaT    = 1. _d 0 / SEAICE_deltaTdyn  
115  C            iOutFGMRES=0
116    C     with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
117          IF ( debugLevel.GE.debLevC .AND.
118         &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
119         &     iOutFGMRES=1
120    
121    C     backward difference extrapolation factors
122          bdfFac = 0. _d 0
123          IF ( SEAICEuseBDF2 ) THEN
124           IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN
125            bdfFac = 0. _d 0
126           ELSE
127            bdfFac = 0.5 _d 0
128           ENDIF
129          ENDIF
130          bdfAlpha = 1. _d 0 + bdfFac
131    
132        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
133         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
134          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
135           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
136            uIceRes(I,J,bi,bj) = 0. _d 0            uIceRes(I,J,bi,bj) = 0. _d 0
137            vIceRes(I,J,bi,bj) = 0. _d 0            vIceRes(I,J,bi,bj) = 0. _d 0
138            duIce  (I,J,bi,bj) = 0. _d 0            duIce  (I,J,bi,bj) = 0. _d 0
139            dvIce  (I,J,bi,bj) = 0. _d 0            dvIce  (I,J,bi,bj) = 0. _d 0
140             ENDDO
141            ENDDO
142    C     cycle ice velocities
143            DO J=1-OLy,sNy+OLy
144             DO I=1-OLx,sNx+OLx
145              duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha
146         &         + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac
147              dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha
148         &         + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac
149            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
150            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
151           ENDDO           ENDDO
152          ENDDO          ENDDO
153            IF ( .NOT.SEAICEuseIMEX ) THEN
154  C     Compute things that do no change during the Newton iteration:  C     Compute things that do no change during the Newton iteration:
155  C     sea-surface tilt and wind stress:  C     sea-surface tilt and wind stress:
156  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT  C     FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT
157          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
158           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
159            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
160       &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT
161            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
162       &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT
163           ENDDO           ENDDO
164          ENDDO          ENDDO
165            ENDIF
166         ENDDO         ENDDO
167        ENDDO        ENDDO
168  C     Start nonlinear Newton iteration: outer loop iteration  C     Start nonlinear Newton iteration: outer loop iteration
# Line 128  C     Start nonlinear Newton iteration: Line 171  C     Start nonlinear Newton iteration:
171         newtonIter = newtonIter + 1         newtonIter = newtonIter + 1
172  C     Compute initial residual F(u), (includes computation of global  C     Compute initial residual F(u), (includes computation of global
173  C     variables DWATN, zeta, and eta)  C     variables DWATN, zeta, and eta)
174         CALL SEAICE_CALC_RESIDUAL(         IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
175       I      uIce, vIce,       I      duIce, dvIce,
176       O      uIceRes, vIceRes,       U      uIce, vIce, JFNKresidual,
177       I      newtonIter, 0, myTime, myIter, myThid )       O      uIceRes, vIceRes,
178         CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)       I      newtonIter, myTime, myIter, myThid )
179  C     local copies of precomputed coefficients that are to stay  C     local copies of precomputed coefficients that are to stay
180  C     constant for the preconditioner  C     constant for the preconditioner
181         DO bj=myByLo(myThid),myByHi(myThid)         DO bj=myByLo(myThid),myByHi(myThid)
182          DO bi=myBxLo(myThid),myBxHi(myThid)          DO bi=myBxLo(myThid),myBxHi(myThid)
183           DO j=1-Oly,sNy+Oly           DO j=1-OLy,sNy+OLy
184            DO i=1-Olx,sNx+Olx            DO i=1-OLx,sNx+OLx
185              zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)
186               etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)
187              dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)
188             pressPre(I,J,bi,bj) = press(I,J,bi,bj)             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
189            ENDDO            ENDDO
190           ENDDO           ENDDO
191          ENDDO          ENDDO
192         ENDDO         ENDDO
 C      
        DO bj=myByLo(myThid),myByHi(myThid)  
         DO bi=myBxLo(myThid),myBxHi(myThid)  
          JFNKresidualTile(bi,bj) = 0. _d 0  
          DO J=1,sNy  
           DO I=1,sNx  
 #ifdef CG2D_SINGLECPU_SUM  
            JFNKlocalBuf(I,J,bi,bj) =  
 #else  
            JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +  
 #endif  
      &          uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +  
      &          vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)  
           ENDDO  
          ENDDO  
         ENDDO  
        ENDDO  
        JFNKresidual = 0. _d 0  
 #ifdef CG2D_SINGLECPU_SUM  
        CALL GLOBAL_SUM_SINGLECPU_RL(  
      &         JFNKlocalBuf,JFNKresidual, 0, 0, myThid)  
 #else  
        CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )  
 #endif  
        JFNKresidual = SQRT(JFNKresidual)  
193  C     compute convergence criterion for linear preconditioned FGMRES  C     compute convergence criterion for linear preconditioned FGMRES
194         JFNKgamma_lin = JFNKgamma_lin_max         JFNKgamma_lin = JFNKgamma_lin_max
195         IF ( newtonIter.GT.1.AND.newtonIter.LE.100         IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
196       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN
197  C     Eisenstat, 1996, equ.(2.6)        C     Eisenstat and Walker (1996), eq.(2.6)
198          phi_e = 1. _d 0          JFNKgamma_lin = SEAICE_JFNKphi
199          alp_e = 1. _d 0       &       *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
         JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e  
200          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
201          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
202         ENDIF         ENDIF
203  C     save the residual for the next iteration  C     save the residual for the next iteration
204         JFNKresidualKm1 = JFNKresidual         JFNKresidualKm1 = JFNKresidual
205  C  
206  C     The Krylov iteration using FGMRES, the preconditioner is LSOR  C     The Krylov iteration using FGMRES, the preconditioner is LSOR
207  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped
208  C     down.  C     down.
# Line 193  C     krylovIter is mapped into "its" in Line 210  C     krylovIter is mapped into "its" in
210  C     in that routine  C     in that routine
211         krylovIter    = 0         krylovIter    = 0
212         iCode         = 0         iCode         = 0
213         IF ( debugLevel.GE.debLevA ) THEN    
         WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')  
      &       ' S/R SEAICE_JFNK: newtonIter,',  
      &       ' total newtonIter, JFNKgamma_lin, initial norm = ',  
      &       newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,  
      &       JFNKgamma_lin, JFNKresidual  
         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,  
      &       SQUEEZE_RIGHT, myThid )  
        ENDIF  
 C  
214         JFNKconverged = JFNKresidual.LT.JFNKtol         JFNKconverged = JFNKresidual.LT.JFNKtol
215  C  
216  C     do Krylov loop only if convergence is not reached  C     do Krylov loop only if convergence is not reached
217  C  
218         IF ( .NOT.JFNKconverged ) THEN         IF ( .NOT.JFNKconverged ) THEN
219  C  
220  C     start Krylov iteration (FGMRES)  C     start Krylov iteration (FGMRES)
221  C  
222          krylovConverged = .FALSE.          krylovConverged = .FALSE.
223          FGMRESeps = JFNKgamma_lin * JFNKresidual          FGMRESeps = JFNKgamma_lin * JFNKresidual
224          DO WHILE ( .NOT.krylovConverged )          DO WHILE ( .NOT.krylovConverged )
225  C     solution vector sol = du/vIce  C     solution vector sol = du/vIce
226  C     residual vector (rhs) Fu = u/vIceRes  C     residual vector (rhs) Fu = u/vIceRes
227  C     output work vectors wk1, -> input work vector wk2  C     output work vectors wk1, -> input work vector wk2
228  C      
229           CALL SEAICE_FGMRES_DRIVER(           CALL SEAICE_FGMRES_DRIVER(
230       I        uIceRes, vIceRes,       I        uIceRes, vIceRes,
231       U        duIce, dvIce, iCode,       U        duIce, dvIce, iCode,
232       I        FGMRESeps,         I        FGMRESeps, iOutFGMRES,
233       I        newtonIter, krylovIter, myTime, myIter, myThid )       I        newtonIter, krylovIter, myTime, myIter, myThid )
234  C     FGMRES returns iCode either asking for an new preconditioned vector  C     FGMRES returns iCode either asking for an new preconditioned vector
235  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate
236  C     iteration  C     iteration
237           IF (iCode.EQ.1) THEN           IF (iCode.EQ.1) THEN
238  C     Call preconditioner  C     Call preconditioner
239            CALL SEAICE_PRECONDITIONER(            IF ( SOLV_MAX_ITERS .GT. 0 )
240       U         duIce, dvIce,       &         CALL SEAICE_PRECONDITIONER(
241       I         zetaPre, etaPre, dwatPre, pressPre,       U         duIce, dvIce,
242         I         zetaPre, etaPre, etaZpre, dwatPre,
243       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
244           ELSEIF (iCode.GE.2) THEN           ELSEIF (iCode.GE.2) THEN
245  C     Compute Jacobian times vector  C     Compute Jacobian times vector
246            CALL SEAICE_JACVEC(            CALL SEAICE_JACVEC(
247       I         uIce, vIce, uIceRes, vIceRes,       I         uIce, vIce, uIceRes, vIceRes,
248       U         duIce, dvIce,         U         duIce, dvIce,
249       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
250           ENDIF           ENDIF
251           krylovConverged = iCode.EQ.0           krylovConverged = iCode.EQ.0
252  C     End of Krylov iterate  C     End of Krylov iterate
253          ENDDO          ENDDO
254          totalKrylovIter = totalKrylovIter + krylovIter          totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
255  C     some output diagnostics  C     some output diagnostics
256          IF ( debugLevel.GE.debLevA ) THEN          IF ( debugLevel.GE.debLevA ) THEN
257             _BEGIN_MASTER( myThid )
258             totalNewtonItersLoc =
259         &        SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter
260             WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
261         &        ' S/R SEAICE_JFNK: Newton iterate / total, ',
262         &        'JFNKgamma_lin, initial norm = ',
263         &        newtonIter, totalNewtonItersLoc,
264         &        JFNKgamma_lin,JFNKresidual
265             CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
266         &        SQUEEZE_RIGHT, myThid )
267           WRITE(msgBuf,'(3(A,I6))')           WRITE(msgBuf,'(3(A,I6))')
268       &        ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,       &        ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
269       &        ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,       &        ' / ', totalNewtonItersLoc,
270       &        ', Nb. of FGMRES iterations = ', krylovIter       &        ', Nb. of FGMRES iterations = ', krylovIter
271           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
272       &        SQUEEZE_RIGHT, myThid )       &        SQUEEZE_RIGHT, myThid )
273             _END_MASTER( myThid )
274          ENDIF          ENDIF
275          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
276           krylovIterFail = krylovIterFail + 1           krylovFails = krylovFails + 1
277            ENDIF
278    C     Set the stopping criterion for the Newton iteration and the
279    C     criterion for the transition from accurate to approximate FGMRES
280            IF ( newtonIter .EQ. 1 ) THEN
281             JFNKtol=JFNKgamma_nonlin*JFNKresidual
282             IF ( JFNKres_tFac .NE. UNSET_RL )
283         &        JFNKres_t = JFNKresidual * JFNKres_tFac
284          ENDIF          ENDIF
285  C     Update linear solution vector and return to Newton iteration  C     Update linear solution vector and return to Newton iteration
286    C     Do a linesearch if necessary, and compute a new residual.
287    C     Note that it should be possible to do the following operations
288    C     at the beginning of the Newton iteration, thereby saving us from
289    C     the extra call of seaice_jfnk_update, but unfortunately that
290    C     changes the results, so we leave the stuff here for now.
291            CALL SEAICE_JFNK_UPDATE(
292         I       duIce, dvIce,
293         U       uIce, vIce, JFNKresidual,
294         O       uIceRes, vIceRes,
295         I       newtonIter, myTime, myIter, myThid )
296    C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
297          DO bj=myByLo(myThid),myByHi(myThid)          DO bj=myByLo(myThid),myByHi(myThid)
298           DO bi=myBxLo(myThid),myBxHi(myThid)           DO bi=myBxLo(myThid),myBxHi(myThid)
299            DO J=1-Oly,sNy+Oly            DO J=1-OLy,sNy+OLy
300             DO I=1-Olx,sNx+Olx             DO I=1-OLx,sNx+OLx
301              uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)              duIce(I,J,bi,bj)= 0. _d 0
302              vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)              dvIce(I,J,bi,bj)= 0. _d 0
303             ENDDO             ENDDO
304            ENDDO            ENDDO
305           ENDDO           ENDDO
306          ENDDO          ENDDO
 C     Set the stopping criterion for the Newton iteration  
         IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual  
307         ENDIF         ENDIF
308  C     end of Newton iterate  C     end of Newton iterate
309        ENDDO        ENDDO
310  C     some output diagnostics  
311        IF ( debugLevel.GE.debLevA ) THEN  C--   Output diagnostics
312    
313          IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
314    C     Count iterations
315           totalJFNKtimeSteps = totalJFNKtimeSteps + 1
316           totalNewtonIters   = totalNewtonIters + newtonIter
317           totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc
318  C     Record failure  C     Record failure
319           totalKrylovFails   = totalKrylovFails + krylovFails
320         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
321          newtonIterFail = newtonIterFail + 1          totalNewtonFails = totalNewtonFails + 1
322          WRITE(msgBuf,'(A,I10)')         ENDIF
323          ENDIF
324    C     Decide whether it is time to dump and reset the counter
325          writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
326         &     myTime+deltaTClock, deltaTClock)
327    #ifdef ALLOW_CAL
328          IF ( useCAL ) THEN
329           CALL CAL_TIME2DUMP(
330         I      zeroRL, SEAICE_monFreq,  deltaTClock,
331         U      writeNow,
332         I      myTime+deltaTclock, myIter+1, myThid )
333          ENDIF
334    #endif
335          IF ( writeNow ) THEN
336           _BEGIN_MASTER( myThid )
337           WRITE(msgBuf,'(A)')
338         &' // ======================================================='
339           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
340         &      SQUEEZE_RIGHT, myThid )
341           WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
342           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
343         &      SQUEEZE_RIGHT, myThid )
344           WRITE(msgBuf,'(A)')
345         &' // ======================================================='
346           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
347         &      SQUEEZE_RIGHT, myThid )
348           WRITE(msgBuf,'(A,I10)')
349         &      ' %JFNK_MON: time step              = ', myIter+1
350           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
351         &      SQUEEZE_RIGHT, myThid )
352           WRITE(msgBuf,'(A,I10)')
353         &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps
354           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
355         &      SQUEEZE_RIGHT, myThid )
356           WRITE(msgBuf,'(A,I10)')
357         &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters
358           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
359         &      SQUEEZE_RIGHT, myThid )
360           WRITE(msgBuf,'(A,I10)')
361         &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters
362           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
363         &      SQUEEZE_RIGHT, myThid )
364           WRITE(msgBuf,'(A,I10)')
365         &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
366           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
367         &      SQUEEZE_RIGHT, myThid )
368           WRITE(msgBuf,'(A,I10)')
369         &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
370           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
371         &      SQUEEZE_RIGHT, myThid )
372           WRITE(msgBuf,'(A)')
373         &' // ======================================================='
374           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
375         &      SQUEEZE_RIGHT, myThid )
376           WRITE(msgBuf,'(A)') ' // End JFNK statistics'
377           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
378         &      SQUEEZE_RIGHT, myThid )
379           WRITE(msgBuf,'(A)')
380         &' // ======================================================='
381           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
382         &      SQUEEZE_RIGHT, myThid )
383           _END_MASTER( myThid )
384    C     reset and start again
385           totalJFNKtimeSteps = 0
386           totalNewtonIters   = 0
387           totalKrylovIters   = 0
388           totalKrylovFails   = 0
389           totalNewtonFails   = 0
390          ENDIF
391    
392    C     Print more debugging information
393          IF ( debugLevel.GE.debLevA ) THEN
394           IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
395            _BEGIN_MASTER( myThid )
396            WRITE(msgBuf,'(A,I10)')
397       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
398       &       myIter       &       myIter+1
399          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
400       &       SQUEEZE_RIGHT, myThid )       &       SQUEEZE_RIGHT, myThid )
401            _END_MASTER( myThid )
402         ENDIF         ENDIF
403         IF ( krylovIterFail .GT. 0 ) THEN         IF ( krylovFails .GT. 0 ) THEN
404          WRITE(msgBuf,'(A,I4,A,I10)')          _BEGIN_MASTER( myThid )
405            WRITE(msgBuf,'(A,I4,A,I10)')
406       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',
407       &       krylovIterFail, ' times in timestep ', myIter       &       krylovFails, ' times in timestep ', myIter+1
408          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
409       &       SQUEEZE_RIGHT, myThid )       &       SQUEEZE_RIGHT, myThid )
410            _END_MASTER( myThid )
411         ENDIF         ENDIF
412         WRITE(msgBuf,'(A,I6)')         _BEGIN_MASTER( myThid )
413           WRITE(msgBuf,'(A,I6,A,I10)')
414       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
415       &      totalKrylovIter       &      totalKrylovItersLoc, ' in timestep ', myIter+1
416           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
417         &      SQUEEZE_RIGHT, myThid )
418           _END_MASTER( myThid )
419          ENDIF
420    
421          RETURN
422          END
423    
424    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
425    CBOP
426    C     !ROUTINE: SEAICE_JFNK_UPDATE
427    C     !INTERFACE:
428    
429          SUBROUTINE SEAICE_JFNK_UPDATE(
430         I     duIce, dvIce,
431         U     uIce, vIce, JFNKresidual,
432         O     uIceRes, vIceRes,
433         I     newtonIter, myTime, myIter, myThid )
434    
435    C     !DESCRIPTION: \bv
436    C     *==========================================================*
437    C     | SUBROUTINE SEAICE_JFNK_UPDATE
438    C     | o Update velocities with incremental solutions of FGMRES
439    C     | o compute residual of updated solutions and do
440    C     | o linesearch:
441    C     |   reduce update until residual is smaller than previous
442    C     |   one (input)
443    C     *==========================================================*
444    C     | written by Martin Losch, Jan 2013
445    C     *==========================================================*
446    C     \ev
447    
448    C     !USES:
449          IMPLICIT NONE
450    
451    C     === Global variables ===
452    #include "SIZE.h"
453    #include "EEPARAMS.h"
454    #include "PARAMS.h"
455    #include "SEAICE_SIZE.h"
456    #include "SEAICE_PARAMS.h"
457    
458    C     !INPUT/OUTPUT PARAMETERS:
459    C     === Routine arguments ===
460    C     myTime :: Simulation time
461    C     myIter :: Simulation timestep number
462    C     myThid :: my Thread Id. number
463    C     newtonIter :: current iterate of Newton iteration
464          _RL     myTime
465          INTEGER myIter
466          INTEGER myThid
467          INTEGER newtonIter
468    C     JFNKresidual :: Residual at the beginning of the FGMRES iteration,
469    C                     changes with newtonIter (updated)
470          _RL     JFNKresidual
471    C     du/vIce   :: ice velocity increment to be added to u/vIce (input)
472          _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
473          _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
474    C     u/vIce    :: ice velocity increment to be added to u/vIce (updated)
475          _RL uIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
476          _RL vIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
477    C     u/vIceRes :: residual of sea-ice momentum equations (output)
478          _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
479          _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
480    
481    C     !LOCAL VARIABLES:
482    C     === Local variables ===
483    C     i,j,bi,bj :: loop indices
484          INTEGER i,j,bi,bj
485          INTEGER l
486          _RL     resLoc, facLS
487          LOGICAL doLineSearch
488    C     nVec    :: size of the input vector(s)
489    C     resTmp  :: vector version of the residuals
490          INTEGER nVec
491          PARAMETER ( nVec  = 2*sNx*sNy )
492          _RL resTmp (nVec,1,nSx,nSy)
493    
494          CHARACTER*(MAX_LEN_MBUF) msgBuf
495    CEOP
496    
497    C     Initialise some local variables
498          l = 0
499          resLoc = JFNKresidual
500          facLS = 1. _d 0
501          doLineSearch = .TRUE.
502          DO WHILE ( doLineSearch )
503    C     Create update
504           DO bj=myByLo(myThid),myByHi(myThid)
505            DO bi=myBxLo(myThid),myBxHi(myThid)
506             DO J=1-OLy,sNy+OLy
507              DO I=1-OLx,sNx+OLx
508               uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
509               vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
510              ENDDO
511             ENDDO
512            ENDDO
513           ENDDO
514    C     Compute current residual F(u), (includes re-computation of global
515    C     variables DWATN, zeta, and eta, i.e. they are different after this)
516           CALL SEAICE_CALC_RESIDUAL(
517         I      uIce, vIce,
518         O      uIceRes, vIceRes,
519         I      newtonIter, 0, myTime, myIter, myThid )
520    C     Important: Compute the norm of the residual using the same scalar
521    C     product that SEAICE_FGMRES does
522           CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
523           CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
524           resLoc = SQRT(resLoc)
525    C     Determine, if we need more iterations
526           doLineSearch = resLoc .GE. JFNKresidual
527    C     Limit the maximum number of iterations arbitrarily to four
528           doLineSearch = doLineSearch .AND. l .LT. 4
529    C     For the first iteration du/vIce = 0 and there will be no
530    C     improvement of the residual possible, so we do only the first
531    C     iteration
532           IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
533    C     Only start a linesearch after some Newton iterations
534           IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
535    C     Increment counter
536           l = l + 1
537    C     some output diagnostics
538           IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
539            _BEGIN_MASTER( myThid )
540            WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
541         &       ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
542         &       'facLS, JFNKresidual, resLoc = ',
543         &        newtonIter, l, facLS, JFNKresidual, resLoc
544          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
545       &       SQUEEZE_RIGHT, myThid )       &       SQUEEZE_RIGHT, myThid )
546                  _END_MASTER( myThid )
547        ENDIF         ENDIF
548    C     Get ready for the next iteration: after adding du/vIce in the first
549    C     iteration, we substract 0.5*du/vIce from u/vIce in the next
550    C     iterations, 0.25*du/vIce in the second, etc.
551           facLS = - 0.5 _d 0 * ABS(facLS)
552          ENDDO
553    C     This is the new residual
554          JFNKresidual = resLoc
555    
556  #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */  #endif /* SEAICE_ALLOW_JFNK */
557    
558        RETURN        RETURN
559        END        END

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.25

  ViewVC Help
Powered by ViewVC 1.1.22