2 |
C $Name$ |
C $Name$ |
3 |
|
|
4 |
#include "SEAICE_OPTIONS.h" |
#include "SEAICE_OPTIONS.h" |
5 |
|
#ifdef ALLOW_AUTODIFF |
6 |
|
# include "AUTODIFF_OPTIONS.h" |
7 |
|
#endif |
8 |
|
|
9 |
C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: |
C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: |
10 |
C-- Contents |
C-- Contents |
76 |
_RL JFNKresidual |
_RL JFNKresidual |
77 |
_RL JFNKresidualKm1 |
_RL JFNKresidualKm1 |
78 |
C parameters to compute convergence criterion |
C parameters to compute convergence criterion |
79 |
_RL phi_e, alp_e, JFNKgamma_lin |
_RL JFNKgamma_lin |
80 |
_RL FGMRESeps |
_RL FGMRESeps |
81 |
_RL JFNKtol |
_RL JFNKtol |
82 |
|
C backward differences extrapolation factors |
83 |
|
_RL bdfFac, bdfAlpha |
84 |
|
C |
85 |
_RL recip_deltaT |
_RL recip_deltaT |
86 |
LOGICAL JFNKconverged, krylovConverged |
LOGICAL JFNKconverged, krylovConverged |
87 |
LOGICAL writeNow |
LOGICAL writeNow |
90 |
C u/vIceRes :: residual of sea-ice momentum equations |
C u/vIceRes :: residual of sea-ice momentum equations |
91 |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
92 |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
93 |
|
C extra time level required for backward difference time stepping |
94 |
|
_RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
95 |
|
_RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
96 |
C du/vIce :: ice velocity increment to be added to u/vIce |
C du/vIce :: ice velocity increment to be added to u/vIce |
97 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
98 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
121 |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
122 |
& iOutFGMRES=1 |
& iOutFGMRES=1 |
123 |
|
|
124 |
|
C backward difference extrapolation factors |
125 |
|
bdfFac = 0. _d 0 |
126 |
|
IF ( SEAICEuseBDF2 ) THEN |
127 |
|
IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN |
128 |
|
bdfFac = 0. _d 0 |
129 |
|
ELSE |
130 |
|
bdfFac = 0.5 _d 0 |
131 |
|
ENDIF |
132 |
|
ENDIF |
133 |
|
bdfAlpha = 1. _d 0 + bdfFac |
134 |
|
|
135 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
136 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
137 |
DO J=1-OLy,sNy+OLy |
DO J=1-OLy,sNy+OLy |
140 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
141 |
duIce (I,J,bi,bj) = 0. _d 0 |
duIce (I,J,bi,bj) = 0. _d 0 |
142 |
dvIce (I,J,bi,bj) = 0. _d 0 |
dvIce (I,J,bi,bj) = 0. _d 0 |
143 |
|
ENDDO |
144 |
|
ENDDO |
145 |
|
C cycle ice velocities |
146 |
|
DO J=1-OLy,sNy+OLy |
147 |
|
DO I=1-OLx,sNx+OLx |
148 |
|
duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha |
149 |
|
& + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac |
150 |
|
dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha |
151 |
|
& + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac |
152 |
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
153 |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
154 |
ENDDO |
ENDDO |
155 |
ENDDO |
ENDDO |
156 |
|
C As long as IMEX is not properly implemented leave this commented out |
157 |
|
CML IF ( .NOT.SEAICEuseIMEX ) THEN |
158 |
C Compute things that do no change during the Newton iteration: |
C Compute things that do no change during the Newton iteration: |
159 |
C sea-surface tilt and wind stress: |
C sea-surface tilt and wind stress: |
160 |
C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT |
C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT |
161 |
DO J=1-OLy,sNy+OLy |
DO J=1-OLy,sNy+OLy |
162 |
DO I=1-OLx,sNx+OLx |
DO I=1-OLx,sNx+OLx |
163 |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
164 |
& + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT |
& + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT |
165 |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
166 |
& + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT |
& + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT |
167 |
ENDDO |
ENDDO |
168 |
ENDDO |
ENDDO |
169 |
|
CML ENDIF |
170 |
ENDDO |
ENDDO |
171 |
ENDDO |
ENDDO |
172 |
C Start nonlinear Newton iteration: outer loop iteration |
C Start nonlinear Newton iteration: outer loop iteration |
198 |
JFNKgamma_lin = JFNKgamma_lin_max |
JFNKgamma_lin = JFNKgamma_lin_max |
199 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter |
IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter |
200 |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
201 |
C Eisenstat, 1996, equ.(2.6) |
C Eisenstat and Walker (1996), eq.(2.6) |
202 |
phi_e = 1. _d 0 |
JFNKgamma_lin = SEAICE_JFNKphi |
203 |
alp_e = 1. _d 0 |
& *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha |
|
JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e |
|
204 |
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
205 |
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
206 |
ENDIF |
ENDIF |