/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Diff of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.20 by jmc, Sat Mar 2 04:35:05 2013 UTC revision 1.31 by mlosch, Thu Jun 8 15:33:50 2017 UTC
# Line 2  C $Header$ Line 2  C $Header$
2  C $Name$  C $Name$
3    
4  #include "SEAICE_OPTIONS.h"  #include "SEAICE_OPTIONS.h"
5    #ifdef ALLOW_AUTODIFF
6    # include "AUTODIFF_OPTIONS.h"
7    #endif
8    
9  C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:  C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
10  C--   Contents  C--   Contents
# Line 53  C     myThid :: my Thread Id. number Line 56  C     myThid :: my Thread Id. number
56        INTEGER myIter        INTEGER myIter
57        INTEGER myThid        INTEGER myThid
58    
59  #if ( (defined SEAICE_CGRID) && \  #ifdef SEAICE_ALLOW_JFNK
       (defined SEAICE_ALLOW_JFNK) && \  
       (defined SEAICE_ALLOW_DYNAMICS) )  
60  C     !FUNCTIONS:  C     !FUNCTIONS:
61        LOGICAL  DIFFERENT_MULTIPLE        LOGICAL  DIFFERENT_MULTIPLE
62        EXTERNAL DIFFERENT_MULTIPLE        EXTERNAL DIFFERENT_MULTIPLE
# Line 68  C     loop indices Line 69  C     loop indices
69        INTEGER newtonIter        INTEGER newtonIter
70        INTEGER krylovIter, krylovFails        INTEGER krylovIter, krylovFails
71        INTEGER totalKrylovItersLoc, totalNewtonItersLoc        INTEGER totalKrylovItersLoc, totalNewtonItersLoc
72    C     FGMRES parameters
73    C     im      :: size of Krylov space
74    C     ifgmres :: interation counter
75          INTEGER im
76          PARAMETER ( im = 50 )
77          INTEGER ifgmres
78  C     FGMRES flag that determines amount of output messages of fgmres  C     FGMRES flag that determines amount of output messages of fgmres
79        INTEGER iOutFGMRES        INTEGER iOutFGMRES
80  C     FGMRES flag that indicates what fgmres wants us to do next  C     FGMRES flag that indicates what fgmres wants us to do next
# Line 75  C     FGMRES flag that indicates what fg Line 82  C     FGMRES flag that indicates what fg
82        _RL     JFNKresidual        _RL     JFNKresidual
83        _RL     JFNKresidualKm1        _RL     JFNKresidualKm1
84  C     parameters to compute convergence criterion  C     parameters to compute convergence criterion
85        _RL     phi_e, alp_e, JFNKgamma_lin        _RL     JFNKgamma_lin
86        _RL     FGMRESeps        _RL     FGMRESeps
87        _RL     JFNKtol        _RL     JFNKtol
88    C     backward differences extrapolation factors
89          _RL bdfFac, bdfAlpha
90    C
91        _RL     recip_deltaT        _RL     recip_deltaT
92        LOGICAL JFNKconverged, krylovConverged        LOGICAL JFNKconverged, krylovConverged
93        LOGICAL writeNow        LOGICAL writeNow
# Line 87  C     parameters to compute convergence Line 96  C     parameters to compute convergence
96  C     u/vIceRes :: residual of sea-ice momentum equations  C     u/vIceRes :: residual of sea-ice momentum equations
97        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
98        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
99    C     extra time level required for backward difference time stepping
100          _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
101          _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
102  C     du/vIce   :: ice velocity increment to be added to u/vIce  C     du/vIce   :: ice velocity increment to be added to u/vIce
103        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
104        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
105  C     precomputed (= constant per Newton iteration) versions of  C     precomputed (= constant per Newton iteration) versions of
106  C     zeta, eta, and DWATN, press  C     zeta, eta, and DWATN, press
107        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
108          _RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
109        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
110        _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
111        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
112    C     work arrays
113          _RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy)
114          _RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy)
115          _RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy)
116  CEOP  CEOP
117    
118  C     Initialise  C     Initialise
# Line 115  C     with iOutFgmres=1, seaice_fgmres p Line 132  C     with iOutFgmres=1, seaice_fgmres p
132       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
133       &     iOutFGMRES=1       &     iOutFGMRES=1
134    
135    C     backward difference extrapolation factors
136          bdfFac = 0. _d 0
137          IF ( SEAICEuseBDF2 ) THEN
138           IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN
139            bdfFac = 0. _d 0
140           ELSE
141            bdfFac = 0.5 _d 0
142           ENDIF
143          ENDIF
144          bdfAlpha = 1. _d 0 + bdfFac
145    
146        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
147         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
148          DO J=1-OLy,sNy+OLy          DO J=1-OLy,sNy+OLy
# Line 123  C     with iOutFgmres=1, seaice_fgmres p Line 151  C     with iOutFgmres=1, seaice_fgmres p
151            vIceRes(I,J,bi,bj) = 0. _d 0            vIceRes(I,J,bi,bj) = 0. _d 0
152            duIce  (I,J,bi,bj) = 0. _d 0            duIce  (I,J,bi,bj) = 0. _d 0
153            dvIce  (I,J,bi,bj) = 0. _d 0            dvIce  (I,J,bi,bj) = 0. _d 0
154             ENDDO
155            ENDDO
156    C     cycle ice velocities
157            DO J=1-OLy,sNy+OLy
158             DO I=1-OLx,sNx+OLx
159              duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha
160         &         + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac
161              dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha
162         &         + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac
163            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
164            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
165           ENDDO           ENDDO
166          ENDDO          ENDDO
167    C     As long as IMEX is not properly implemented leave this commented out
168    CML        IF ( .NOT.SEAICEuseIMEX ) THEN
169  C     Compute things that do no change during the Newton iteration:  C     Compute things that do no change during the Newton iteration:
170  C     sea-surface tilt and wind stress:  C     sea-surface tilt and wind stress:
171  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT  C     FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT
172          DO J=1-OLy,sNy+OLy          DO J=1-OLy,sNy+OLy
173           DO I=1-OLx,sNx+OLx           DO I=1-OLx,sNx+OLx
174            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
175       &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT       &         + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT
176            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
177       &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT       &         + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT
178           ENDDO           ENDDO
179          ENDDO          ENDDO
180    CML        ENDIF
181         ENDDO         ENDDO
182        ENDDO        ENDDO
183  C     Start nonlinear Newton iteration: outer loop iteration  C     Start nonlinear Newton iteration: outer loop iteration
184        DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.        DO WHILE ( newtonIter.LT.SEAICEnonLinIterMax .AND.
185       &     .NOT.JFNKconverged )       &     .NOT.JFNKconverged )
186         newtonIter = newtonIter + 1         newtonIter = newtonIter + 1
187  C     Compute initial residual F(u), (includes computation of global  C     Compute initial residual F(u), (includes computation of global
# Line 158  C     constant for the preconditioner Line 198  C     constant for the preconditioner
198           DO j=1-OLy,sNy+OLy           DO j=1-OLy,sNy+OLy
199            DO i=1-OLx,sNx+OLx            DO i=1-OLx,sNx+OLx
200             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)
201               zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj)
202              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)
203             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)
204             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
# Line 169  C     compute convergence criterion for Line 210  C     compute convergence criterion for
210         JFNKgamma_lin = JFNKgamma_lin_max         JFNKgamma_lin = JFNKgamma_lin_max
211         IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter         IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
212       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN
213  C     Eisenstat, 1996, equ.(2.6)  C     Eisenstat and Walker (1996), eq.(2.6)
214          phi_e = 1. _d 0          JFNKgamma_lin = SEAICE_JFNKphi
215          alp_e = 1. _d 0       &       *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
         JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e  
216          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
217          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
218         ENDIF         ENDIF
# Line 188  C     in that routine Line 228  C     in that routine
228         iCode         = 0         iCode         = 0
229    
230         JFNKconverged = JFNKresidual.LT.JFNKtol         JFNKconverged = JFNKresidual.LT.JFNKtol
231         &      .OR.JFNKresidual.EQ.0. _d 0
232    
233  C     do Krylov loop only if convergence is not reached  C     do Krylov loop only if convergence is not reached
234    
# Line 197  C     start Krylov iteration (FGMRES) Line 238  C     start Krylov iteration (FGMRES)
238    
239          krylovConverged = .FALSE.          krylovConverged = .FALSE.
240          FGMRESeps = JFNKgamma_lin * JFNKresidual          FGMRESeps = JFNKgamma_lin * JFNKresidual
241    C     map first guess sol; it is zero because the solution is a correction
242           CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid)
243    C     map rhs and change its sign because we are solving J*u = -F
244            CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid)
245            DO bj=myByLo(myThid),myByHi(myThid)
246             DO bi=myBxLo(myThid),myBxHi(myThid)
247              DO j=1,nVec
248               rhs(j,bi,bj) = - rhs(j,bi,bj)
249              ENDDO
250             ENDDO
251            ENDDO
252          DO WHILE ( .NOT.krylovConverged )          DO WHILE ( .NOT.krylovConverged )
253  C     solution vector sol = du/vIce  C     solution vector sol = du/vIce
254  C     residual vector (rhs) Fu = u/vIceRes  C     residual vector (rhs) Fu = u/vIceRes
255  C     output work vectors wk1, -> input work vector wk2  C     output work vectors wk1, -> input work vector wk2
256    
257           CALL SEAICE_FGMRES_DRIVER(  C     map preconditioner results or Jacobian times vector,
258       I        uIceRes, vIceRes,  C     stored in du/vIce to wk2, for iCode=0, wk2 is set to zero,
259       U        duIce, dvIce, iCode,  C     because du/vIce = 0
260       I        FGMRESeps, iOutFGMRES,           CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid)
261       I        newtonIter, krylovIter, myTime, myIter, myThid )  C
262             CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter,
263         U        vv,w,wk1,wk2,
264         I        FGMRESeps,SEAICElinearIterMax,iOutFGMRES,
265         U        iCode,
266         I        myThid)
267    C    
268             IF ( iCode .EQ. 0 ) THEN
269    C     map sol(ution) vector to du/vIce
270              CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid)
271             ELSE
272    C     map work vector to du/vIce to either compute a preconditioner
273    C     solution (wk1=rhs) or a Jacobian times wk1
274              CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid)
275             ENDIF
276    C     Fill overlaps in updated fields
277             CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid)
278  C     FGMRES returns iCode either asking for an new preconditioned vector  C     FGMRES returns iCode either asking for an new preconditioned vector
279  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate
280  C     iteration  C     iteration
281           IF (iCode.EQ.1) THEN           IF (iCode.EQ.1) THEN
282  C     Call preconditioner  C     Call preconditioner
283            IF ( SOLV_MAX_ITERS .GT. 0 )            IF ( SEAICEpreconLinIter .GT. 0 )
284       &         CALL SEAICE_PRECONDITIONER(       &         CALL SEAICE_PRECONDITIONER(
285       U         duIce, dvIce,       U         duIce, dvIce,
286       I         zetaPre, etaPre, etaZpre, dwatPre,       I         zetaPre, etaPre, etaZpre, zetaZpre, dwatPre,
287       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
288           ELSEIF (iCode.GE.2) THEN           ELSEIF (iCode.GE.2) THEN
289  C     Compute Jacobian times vector  C     Compute Jacobian times vector
# Line 232  C     some output diagnostics Line 300  C     some output diagnostics
300          IF ( debugLevel.GE.debLevA ) THEN          IF ( debugLevel.GE.debLevA ) THEN
301           _BEGIN_MASTER( myThid )           _BEGIN_MASTER( myThid )
302           totalNewtonItersLoc =           totalNewtonItersLoc =
303       &        SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter       &        SEAICEnonLinIterMax*(myIter-nIter0)+newtonIter
304           WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')           WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
305       &        ' S/R SEAICE_JFNK: Newton iterate / total, ',       &        ' S/R SEAICE_JFNK: Newton iterate / total, ',
306       &        'JFNKgamma_lin, initial norm = ',       &        'JFNKgamma_lin, initial norm = ',
# Line 248  C     some output diagnostics Line 316  C     some output diagnostics
316       &        SQUEEZE_RIGHT, myThid )       &        SQUEEZE_RIGHT, myThid )
317           _END_MASTER( myThid )           _END_MASTER( myThid )
318          ENDIF          ENDIF
319          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN          IF ( krylovIter.EQ.SEAICElinearIterMax ) THEN
320           krylovFails = krylovFails + 1           krylovFails = krylovFails + 1
321          ENDIF          ENDIF
322  C     Set the stopping criterion for the Newton iteration and the  C     Set the stopping criterion for the Newton iteration and the
323  C     criterion for the transition from accurate to approximate FGMRES  C     criterion for the transition from accurate to approximate FGMRES
324          IF ( newtonIter .EQ. 1 ) THEN          IF ( newtonIter .EQ. 1 ) THEN
325           JFNKtol=JFNKgamma_nonlin*JFNKresidual           JFNKtol=SEAICEnonLinTol*JFNKresidual
326           IF ( JFNKres_tFac .NE. UNSET_RL )           IF ( JFNKres_tFac .NE. UNSET_RL )
327       &        JFNKres_t = JFNKresidual * JFNKres_tFac       &        JFNKres_t = JFNKresidual * JFNKres_tFac
328          ENDIF          ENDIF
# Line 293  C     Count iterations Line 361  C     Count iterations
361         totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc         totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc
362  C     Record failure  C     Record failure
363         totalKrylovFails   = totalKrylovFails + krylovFails         totalKrylovFails   = totalKrylovFails + krylovFails
364         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
365          totalNewtonFails = totalNewtonFails + 1          totalNewtonFails = totalNewtonFails + 1
366         ENDIF         ENDIF
367        ENDIF        ENDIF
# Line 367  C     reset and start again Line 435  C     reset and start again
435    
436  C     Print more debugging information  C     Print more debugging information
437        IF ( debugLevel.GE.debLevA ) THEN        IF ( debugLevel.GE.debLevA ) THEN
438         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
439          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
440          WRITE(msgBuf,'(A,I10)')          WRITE(msgBuf,'(A,I10)')
441       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
# Line 529  C     iterations, 0.25*du/vIce in the se Line 597  C     iterations, 0.25*du/vIce in the se
597  C     This is the new residual  C     This is the new residual
598        JFNKresidual = resLoc        JFNKresidual = resLoc
599    
600  #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */  #endif /* SEAICE_ALLOW_JFNK */
601    
602        RETURN        RETURN
603        END        END

Legend:
Removed from v.1.20  
changed lines
  Added in v.1.31

  ViewVC Help
Powered by ViewVC 1.1.22