/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Diff of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by mlosch, Thu Jan 17 10:42:43 2013 UTC revision 1.31 by mlosch, Thu Jun 8 15:33:50 2017 UTC
# Line 2  C $Header$ Line 2  C $Header$
2  C $Name$  C $Name$
3    
4  #include "SEAICE_OPTIONS.h"  #include "SEAICE_OPTIONS.h"
5    #ifdef ALLOW_AUTODIFF
6    # include "AUTODIFF_OPTIONS.h"
7    #endif
8    
9  C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:  C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
10  C--   Contents  C--   Contents
# Line 53  C     myThid :: my Thread Id. number Line 56  C     myThid :: my Thread Id. number
56        INTEGER myIter        INTEGER myIter
57        INTEGER myThid        INTEGER myThid
58    
59  #if ( (defined SEAICE_CGRID) && \  #ifdef SEAICE_ALLOW_JFNK
       (defined SEAICE_ALLOW_JFNK) && \  
       (defined SEAICE_ALLOW_DYNAMICS) )  
60  C     !FUNCTIONS:  C     !FUNCTIONS:
61        LOGICAL  DIFFERENT_MULTIPLE        LOGICAL  DIFFERENT_MULTIPLE
62        EXTERNAL DIFFERENT_MULTIPLE        EXTERNAL DIFFERENT_MULTIPLE
# Line 68  C     loop indices Line 69  C     loop indices
69        INTEGER newtonIter        INTEGER newtonIter
70        INTEGER krylovIter, krylovFails        INTEGER krylovIter, krylovFails
71        INTEGER totalKrylovItersLoc, totalNewtonItersLoc        INTEGER totalKrylovItersLoc, totalNewtonItersLoc
72    C     FGMRES parameters
73    C     im      :: size of Krylov space
74    C     ifgmres :: interation counter
75          INTEGER im
76          PARAMETER ( im = 50 )
77          INTEGER ifgmres
78  C     FGMRES flag that determines amount of output messages of fgmres  C     FGMRES flag that determines amount of output messages of fgmres
79        INTEGER iOutFGMRES        INTEGER iOutFGMRES
80  C     FGMRES flag that indicates what fgmres wants us to do next  C     FGMRES flag that indicates what fgmres wants us to do next
# Line 75  C     FGMRES flag that indicates what fg Line 82  C     FGMRES flag that indicates what fg
82        _RL     JFNKresidual        _RL     JFNKresidual
83        _RL     JFNKresidualKm1        _RL     JFNKresidualKm1
84  C     parameters to compute convergence criterion  C     parameters to compute convergence criterion
85        _RL     phi_e, alp_e, JFNKgamma_lin        _RL     JFNKgamma_lin
86        _RL     FGMRESeps        _RL     FGMRESeps
87        _RL     JFNKtol        _RL     JFNKtol
88  C      C     backward differences extrapolation factors
89          _RL bdfFac, bdfAlpha
90    C
91        _RL     recip_deltaT        _RL     recip_deltaT
92        LOGICAL JFNKconverged, krylovConverged        LOGICAL JFNKconverged, krylovConverged
93        LOGICAL writeNow        LOGICAL writeNow
94        CHARACTER*(MAX_LEN_MBUF) msgBuf        CHARACTER*(MAX_LEN_MBUF) msgBuf
95  C  
96  C     u/vIceRes :: residual of sea-ice momentum equations  C     u/vIceRes :: residual of sea-ice momentum equations
97        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
98        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
99  C     vector version of the residuals  C     extra time level required for backward difference time stepping
100        _RL resTmp (nVec,1,nSx,nSy)        _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
101          _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
102  C     du/vIce   :: ice velocity increment to be added to u/vIce  C     du/vIce   :: ice velocity increment to be added to u/vIce
103        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
104        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
105  C     precomputed (= constant per Newton iteration) versions of  C     precomputed (= constant per Newton iteration) versions of
106  C     zeta, eta, and DWATN, press  C     zeta, eta, and DWATN, press
107        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
108          _RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
109        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
110        _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
111        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
112    C     work arrays
113          _RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy)
114          _RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy)
115          _RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy)
116  CEOP  CEOP
117    
118  C     Initialise  C     Initialise
# Line 117  C     with iOutFgmres=1, seaice_fgmres p Line 132  C     with iOutFgmres=1, seaice_fgmres p
132       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
133       &     iOutFGMRES=1       &     iOutFGMRES=1
134    
135  C      C     backward difference extrapolation factors
136          bdfFac = 0. _d 0
137          IF ( SEAICEuseBDF2 ) THEN
138           IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN
139            bdfFac = 0. _d 0
140           ELSE
141            bdfFac = 0.5 _d 0
142           ENDIF
143          ENDIF
144          bdfAlpha = 1. _d 0 + bdfFac
145    
146        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
147         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
148          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
149           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
150            uIceRes(I,J,bi,bj) = 0. _d 0            uIceRes(I,J,bi,bj) = 0. _d 0
151            vIceRes(I,J,bi,bj) = 0. _d 0            vIceRes(I,J,bi,bj) = 0. _d 0
152            duIce  (I,J,bi,bj) = 0. _d 0            duIce  (I,J,bi,bj) = 0. _d 0
153            dvIce  (I,J,bi,bj) = 0. _d 0            dvIce  (I,J,bi,bj) = 0. _d 0
154             ENDDO
155            ENDDO
156    C     cycle ice velocities
157            DO J=1-OLy,sNy+OLy
158             DO I=1-OLx,sNx+OLx
159              duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha
160         &         + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac
161              dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha
162         &         + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac
163            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
164            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
165           ENDDO           ENDDO
166          ENDDO          ENDDO
167    C     As long as IMEX is not properly implemented leave this commented out
168    CML        IF ( .NOT.SEAICEuseIMEX ) THEN
169  C     Compute things that do no change during the Newton iteration:  C     Compute things that do no change during the Newton iteration:
170  C     sea-surface tilt and wind stress:  C     sea-surface tilt and wind stress:
171  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT  C     FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT
172          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
173           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
174            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
175       &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT
176            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
177       &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT
178           ENDDO           ENDDO
179          ENDDO          ENDDO
180    CML        ENDIF
181         ENDDO         ENDDO
182        ENDDO        ENDDO
183  C     Start nonlinear Newton iteration: outer loop iteration  C     Start nonlinear Newton iteration: outer loop iteration
184        DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.        DO WHILE ( newtonIter.LT.SEAICEnonLinIterMax .AND.
185       &     .NOT.JFNKconverged )       &     .NOT.JFNKconverged )
186         newtonIter = newtonIter + 1         newtonIter = newtonIter + 1
187  C     Compute initial residual F(u), (includes computation of global  C     Compute initial residual F(u), (includes computation of global
188  C     variables DWATN, zeta, and eta)  C     variables DWATN, zeta, and eta)
189         IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(         IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
190       I      duIce, dvIce,       I      duIce, dvIce,
191       U      uIce, vIce, JFNKresidual,       U      uIce, vIce, JFNKresidual,
192       O      uIceRes, vIceRes,       O      uIceRes, vIceRes,
193       I      newtonIter, myTime, myIter, myThid )       I      newtonIter, myTime, myIter, myThid )
# Line 158  C     local copies of precomputed coeffi Line 195  C     local copies of precomputed coeffi
195  C     constant for the preconditioner  C     constant for the preconditioner
196         DO bj=myByLo(myThid),myByHi(myThid)         DO bj=myByLo(myThid),myByHi(myThid)
197          DO bi=myBxLo(myThid),myBxHi(myThid)          DO bi=myBxLo(myThid),myBxHi(myThid)
198           DO j=1-Oly,sNy+Oly           DO j=1-OLy,sNy+OLy
199            DO i=1-Olx,sNx+Olx            DO i=1-OLx,sNx+OLx
200             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)
201               zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj)
202              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)
203             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)
204             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
# Line 170  C     constant for the preconditioner Line 208  C     constant for the preconditioner
208         ENDDO         ENDDO
209  C     compute convergence criterion for linear preconditioned FGMRES  C     compute convergence criterion for linear preconditioned FGMRES
210         JFNKgamma_lin = JFNKgamma_lin_max         JFNKgamma_lin = JFNKgamma_lin_max
211         IF ( newtonIter.GT.1.AND.newtonIter.LE.100         IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
212       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN
213  C     Eisenstat, 1996, equ.(2.6)        C     Eisenstat and Walker (1996), eq.(2.6)
214          phi_e = 1. _d 0          JFNKgamma_lin = SEAICE_JFNKphi
215          alp_e = 1. _d 0       &       *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
         JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e  
216          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
217          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
218         ENDIF         ENDIF
219  C     save the residual for the next iteration  C     save the residual for the next iteration
220         JFNKresidualKm1 = JFNKresidual         JFNKresidualKm1 = JFNKresidual
221  C  
222  C     The Krylov iteration using FGMRES, the preconditioner is LSOR  C     The Krylov iteration using FGMRES, the preconditioner is LSOR
223  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped
224  C     down.  C     down.
# Line 189  C     krylovIter is mapped into "its" in Line 226  C     krylovIter is mapped into "its" in
226  C     in that routine  C     in that routine
227         krylovIter    = 0         krylovIter    = 0
228         iCode         = 0         iCode         = 0
229  C  
230         JFNKconverged = JFNKresidual.LT.JFNKtol         JFNKconverged = JFNKresidual.LT.JFNKtol
231  C       &      .OR.JFNKresidual.EQ.0. _d 0
232    
233  C     do Krylov loop only if convergence is not reached  C     do Krylov loop only if convergence is not reached
234  C  
235         IF ( .NOT.JFNKconverged ) THEN         IF ( .NOT.JFNKconverged ) THEN
236  C  
237  C     start Krylov iteration (FGMRES)  C     start Krylov iteration (FGMRES)
238  C  
239          krylovConverged = .FALSE.          krylovConverged = .FALSE.
240          FGMRESeps = JFNKgamma_lin * JFNKresidual          FGMRESeps = JFNKgamma_lin * JFNKresidual
241          DO WHILE ( .NOT.krylovConverged )  C     map first guess sol; it is zero because the solution is a correction
242           CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid)
243    C     map rhs and change its sign because we are solving J*u = -F
244            CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid)
245            DO bj=myByLo(myThid),myByHi(myThid)
246             DO bi=myBxLo(myThid),myBxHi(myThid)
247              DO j=1,nVec
248               rhs(j,bi,bj) = - rhs(j,bi,bj)
249              ENDDO
250             ENDDO
251            ENDDO
252            DO WHILE ( .NOT.krylovConverged )
253  C     solution vector sol = du/vIce  C     solution vector sol = du/vIce
254  C     residual vector (rhs) Fu = u/vIceRes  C     residual vector (rhs) Fu = u/vIceRes
255  C     output work vectors wk1, -> input work vector wk2  C     output work vectors wk1, -> input work vector wk2
256    
257    C     map preconditioner results or Jacobian times vector,
258    C     stored in du/vIce to wk2, for iCode=0, wk2 is set to zero,
259    C     because du/vIce = 0
260             CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid)
261    C
262             CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter,
263         U        vv,w,wk1,wk2,
264         I        FGMRESeps,SEAICElinearIterMax,iOutFGMRES,
265         U        iCode,
266         I        myThid)
267  C      C    
268           CALL SEAICE_FGMRES_DRIVER(           IF ( iCode .EQ. 0 ) THEN
269       I        uIceRes, vIceRes,  C     map sol(ution) vector to du/vIce
270       U        duIce, dvIce, iCode,            CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid)
271       I        FGMRESeps, iOutFGMRES,           ELSE
272       I        newtonIter, krylovIter, myTime, myIter, myThid )  C     map work vector to du/vIce to either compute a preconditioner
273    C     solution (wk1=rhs) or a Jacobian times wk1
274              CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid)
275             ENDIF
276    C     Fill overlaps in updated fields
277             CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid)
278  C     FGMRES returns iCode either asking for an new preconditioned vector  C     FGMRES returns iCode either asking for an new preconditioned vector
279  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate
280  C     iteration  C     iteration
281           IF (iCode.EQ.1) THEN           IF (iCode.EQ.1) THEN
282  C     Call preconditioner  C     Call preconditioner
283            IF ( SOLV_MAX_ITERS .GT. 0 )            IF ( SEAICEpreconLinIter .GT. 0 )
284       &         CALL SEAICE_PRECONDITIONER(       &         CALL SEAICE_PRECONDITIONER(
285       U         duIce, dvIce,       U         duIce, dvIce,
286       I         zetaPre, etaPre, etaZpre, dwatPre,       I         zetaPre, etaPre, etaZpre, zetaZpre, dwatPre,
287       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
288           ELSEIF (iCode.GE.2) THEN           ELSEIF (iCode.GE.2) THEN
289  C     Compute Jacobian times vector  C     Compute Jacobian times vector
290            CALL SEAICE_JACVEC(            CALL SEAICE_JACVEC(
291       I         uIce, vIce, uIceRes, vIceRes,       I         uIce, vIce, uIceRes, vIceRes,
292       U         duIce, dvIce,         U         duIce, dvIce,
293       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
294           ENDIF           ENDIF
295           krylovConverged = iCode.EQ.0           krylovConverged = iCode.EQ.0
# Line 234  C     End of Krylov iterate Line 299  C     End of Krylov iterate
299  C     some output diagnostics  C     some output diagnostics
300          IF ( debugLevel.GE.debLevA ) THEN          IF ( debugLevel.GE.debLevA ) THEN
301           _BEGIN_MASTER( myThid )           _BEGIN_MASTER( myThid )
302           totalNewtonItersLoc =           totalNewtonItersLoc =
303       &        SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter       &        SEAICEnonLinIterMax*(myIter-nIter0)+newtonIter
304           WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')           WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
305       &        ' S/R SEAICE_JFNK: Newton iterate / total, ',       &        ' S/R SEAICE_JFNK: Newton iterate / total, ',
306       &        'JFNKgamma_lin, initial norm = ',       &        'JFNKgamma_lin, initial norm = ',
307       &        newtonIter, totalNewtonItersLoc,       &        newtonIter, totalNewtonItersLoc,
# Line 244  C     some output diagnostics Line 309  C     some output diagnostics
309           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
310       &        SQUEEZE_RIGHT, myThid )       &        SQUEEZE_RIGHT, myThid )
311           WRITE(msgBuf,'(3(A,I6))')           WRITE(msgBuf,'(3(A,I6))')
312       &        ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,       &        ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
313       &        ' / ', totalNewtonItersLoc,       &        ' / ', totalNewtonItersLoc,
314       &        ', Nb. of FGMRES iterations = ', krylovIter       &        ', Nb. of FGMRES iterations = ', krylovIter
315           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
316       &        SQUEEZE_RIGHT, myThid )       &        SQUEEZE_RIGHT, myThid )
317           _END_MASTER( myThid )           _END_MASTER( myThid )
318          ENDIF          ENDIF
319          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN          IF ( krylovIter.EQ.SEAICElinearIterMax ) THEN
320           krylovFails = krylovFails + 1           krylovFails = krylovFails + 1
321          ENDIF          ENDIF
322  C     Set the stopping criterion for the Newton iteration and the  C     Set the stopping criterion for the Newton iteration and the
323  C     criterion for the transition from accurate to approximate FGMRES  C     criterion for the transition from accurate to approximate FGMRES
324          IF ( newtonIter .EQ. 1 ) THEN          IF ( newtonIter .EQ. 1 ) THEN
325           JFNKtol=JFNKgamma_nonlin*JFNKresidual           JFNKtol=SEAICEnonLinTol*JFNKresidual
326           IF ( JFNKres_tFac .NE. UNSET_RL )           IF ( JFNKres_tFac .NE. UNSET_RL )
327       &        JFNKres_t = JFNKresidual * JFNKres_tFac       &        JFNKres_t = JFNKresidual * JFNKres_tFac
328          ENDIF          ENDIF
# Line 267  C     Note that it should be possible to Line 332  C     Note that it should be possible to
332  C     at the beginning of the Newton iteration, thereby saving us from  C     at the beginning of the Newton iteration, thereby saving us from
333  C     the extra call of seaice_jfnk_update, but unfortunately that  C     the extra call of seaice_jfnk_update, but unfortunately that
334  C     changes the results, so we leave the stuff here for now.  C     changes the results, so we leave the stuff here for now.
335          CALL SEAICE_JFNK_UPDATE(          CALL SEAICE_JFNK_UPDATE(
336       I       duIce, dvIce,       I       duIce, dvIce,
337       U       uIce, vIce, JFNKresidual,       U       uIce, vIce, JFNKresidual,
338       O       uIceRes, vIceRes,       O       uIceRes, vIceRes,
339       I       newtonIter, myTime, myIter, myThid )       I       newtonIter, myTime, myIter, myThid )
340  C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver  C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
341          DO bj=myByLo(myThid),myByHi(myThid)          DO bj=myByLo(myThid),myByHi(myThid)
342           DO bi=myBxLo(myThid),myBxHi(myThid)           DO bi=myBxLo(myThid),myBxHi(myThid)
343            DO J=1-Oly,sNy+Oly            DO J=1-OLy,sNy+OLy
344             DO I=1-Olx,sNx+Olx             DO I=1-OLx,sNx+OLx
345              duIce(I,J,bi,bj)= 0. _d 0              duIce(I,J,bi,bj)= 0. _d 0
346              dvIce(I,J,bi,bj)= 0. _d 0              dvIce(I,J,bi,bj)= 0. _d 0
347             ENDDO             ENDDO
# Line 286  C     reset du/vIce here instead of sett Line 351  C     reset du/vIce here instead of sett
351         ENDIF         ENDIF
352  C     end of Newton iterate  C     end of Newton iterate
353        ENDDO        ENDDO
354  C  
355  C--   Output diagnostics  C--   Output diagnostics
356  C  
357        IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN        IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
358  C     Count iterations  C     Count iterations
359         totalJFNKtimeSteps = totalJFNKtimeSteps + 1         totalJFNKtimeSteps = totalJFNKtimeSteps + 1
# Line 296  C     Count iterations Line 361  C     Count iterations
361         totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc         totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc
362  C     Record failure  C     Record failure
363         totalKrylovFails   = totalKrylovFails + krylovFails         totalKrylovFails   = totalKrylovFails + krylovFails
364         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
365          totalNewtonFails = totalNewtonFails + 1          totalNewtonFails = totalNewtonFails + 1
366         ENDIF         ENDIF
367        ENDIF        ENDIF
368  C     Decide whether it is time to dump and reset the counter  C     Decide whether it is time to dump and reset the counter
369        writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,        writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
370       &     myTime+deltaTClock, deltaTClock)       &     myTime+deltaTClock, deltaTClock)
371  #ifdef ALLOW_CAL  #ifdef ALLOW_CAL
372        IF ( useCAL ) THEN        IF ( useCAL ) THEN
373         CALL CAL_TIME2DUMP(         CALL CAL_TIME2DUMP(
374       I      zeroRL, SEAICE_monFreq,  deltaTClock,       I      zeroRL, SEAICE_monFreq,  deltaTClock,
375       U      writeNow,       U      writeNow,
376       I      myTime+deltaTclock, myIter+1, myThid )       I      myTime+deltaTclock, myIter+1, myThid )
# Line 313  C     Decide whether it is time to dump Line 378  C     Decide whether it is time to dump
378  #endif  #endif
379        IF ( writeNow ) THEN        IF ( writeNow ) THEN
380         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
381         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
382       &' // ======================================================='       &' // ======================================================='
383         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
384       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
385         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
386         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
387       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
388         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
389       &' // ======================================================='       &' // ======================================================='
390         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
391       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
392         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
393       &      ' %JFNK_MON: time step              = ', myIter+1       &      ' %JFNK_MON: time step              = ', myIter+1
394         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
395       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
396         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
397       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps
398         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
399       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
400         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
401       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters
402         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
403       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
404         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
405       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters
406         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
407       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
408         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
409       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
410         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
411       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
412         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
413       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
414         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
415       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
416         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
417       &' // ======================================================='       &' // ======================================================='
418         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
419       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
420         WRITE(msgBuf,'(A)') ' // End JFNK statistics'         WRITE(msgBuf,'(A)') ' // End JFNK statistics'
421         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
422       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
423         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
424       &' // ======================================================='       &' // ======================================================='
425         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
426       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
# Line 370  C     reset and start again Line 435  C     reset and start again
435    
436  C     Print more debugging information  C     Print more debugging information
437        IF ( debugLevel.GE.debLevA ) THEN        IF ( debugLevel.GE.debLevA ) THEN
438         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
439          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
440          WRITE(msgBuf,'(A,I10)')          WRITE(msgBuf,'(A,I10)')
441       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
442       &       myIter+1       &       myIter+1
443          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 381  C     Print more debugging information Line 446  C     Print more debugging information
446         ENDIF         ENDIF
447         IF ( krylovFails .GT. 0 ) THEN         IF ( krylovFails .GT. 0 ) THEN
448          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
449          WRITE(msgBuf,'(A,I4,A,I10)')          WRITE(msgBuf,'(A,I4,A,I10)')
450       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',
451       &       krylovFails, ' times in timestep ', myIter+1       &       krylovFails, ' times in timestep ', myIter+1
452          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 389  C     Print more debugging information Line 454  C     Print more debugging information
454          _END_MASTER( myThid )          _END_MASTER( myThid )
455         ENDIF         ENDIF
456         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
457         WRITE(msgBuf,'(A,I6,A,I10)')         WRITE(msgBuf,'(A,I6,A,I10)')
458       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
459       &      totalKrylovItersLoc, ' in timestep ', myIter+1       &      totalKrylovItersLoc, ' in timestep ', myIter+1
460         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 405  CBOP Line 470  CBOP
470  C     !ROUTINE: SEAICE_JFNK_UPDATE  C     !ROUTINE: SEAICE_JFNK_UPDATE
471  C     !INTERFACE:  C     !INTERFACE:
472    
473        SUBROUTINE SEAICE_JFNK_UPDATE(        SUBROUTINE SEAICE_JFNK_UPDATE(
474       I     duIce, dvIce,       I     duIce, dvIce,
475       U     uIce, vIce, JFNKresidual,       U     uIce, vIce, JFNKresidual,
476       O     uIceRes, vIceRes,       O     uIceRes, vIceRes,
477       I     newtonIter, myTime, myIter, myThid )       I     newtonIter, myTime, myIter, myThid )
# Line 465  C     i,j,bi,bj :: loop indices Line 530  C     i,j,bi,bj :: loop indices
530        _RL     resLoc, facLS        _RL     resLoc, facLS
531        LOGICAL doLineSearch        LOGICAL doLineSearch
532  C     nVec    :: size of the input vector(s)  C     nVec    :: size of the input vector(s)
533  C     vector version of the residuals  C     resTmp  :: vector version of the residuals
534        INTEGER nVec        INTEGER nVec
535        PARAMETER ( nVec  = 2*sNx*sNy )        PARAMETER ( nVec  = 2*sNx*sNy )
536        _RL resTmp (nVec,1,nSx,nSy)        _RL resTmp (nVec,1,nSx,nSy)
537  C  
538        CHARACTER*(MAX_LEN_MBUF) msgBuf        CHARACTER*(MAX_LEN_MBUF) msgBuf
539  CEOP  CEOP
540    
# Line 479  C     Initialise some local variables Line 544  C     Initialise some local variables
544        facLS = 1. _d 0        facLS = 1. _d 0
545        doLineSearch = .TRUE.        doLineSearch = .TRUE.
546        DO WHILE ( doLineSearch )        DO WHILE ( doLineSearch )
 C     Determine, if we need more iterations  
        doLineSearch = resLoc .GE. JFNKresidual  
 C     Limit the maximum number of iterations arbitrarily to four  
        doLineSearch = doLineSearch .AND. l .LE. 4  
 C     For the first iteration du/vIce = 0 and there will be no  
 C     improvement of the residual possible, so we do only the first  
 C     iteration  
        IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.  
 C     Only start a linesearch after some Newton iterations  
        IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.  
 C     Increment counter  
        l = l + 1  
547  C     Create update  C     Create update
548         DO bj=myByLo(myThid),myByHi(myThid)         DO bj=myByLo(myThid),myByHi(myThid)
549          DO bi=myBxLo(myThid),myBxHi(myThid)          DO bi=myBxLo(myThid),myBxHi(myThid)
550           DO J=1-Oly,sNy+Oly           DO J=1-OLy,sNy+OLy
551            DO I=1-Olx,sNx+Olx            DO I=1-OLx,sNx+OLx
552             uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)             uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
553             vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)             vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
554            ENDDO            ENDDO
# Line 504  C     Create update Line 557  C     Create update
557         ENDDO         ENDDO
558  C     Compute current residual F(u), (includes re-computation of global  C     Compute current residual F(u), (includes re-computation of global
559  C     variables DWATN, zeta, and eta, i.e. they are different after this)  C     variables DWATN, zeta, and eta, i.e. they are different after this)
560         CALL SEAICE_CALC_RESIDUAL(         CALL SEAICE_CALC_RESIDUAL(
561       I      uIce, vIce,       I      uIce, vIce,
562       O      uIceRes, vIceRes,       O      uIceRes, vIceRes,
563       I      newtonIter, 0, myTime, myIter, myThid )       I      newtonIter, 0, myTime, myIter, myThid )
564  C     Important: Compute the norm of the residual using the same scalar  C     Important: Compute the norm of the residual using the same scalar
565  C     product that SEAICE_FGMRES does  C     product that SEAICE_FGMRES does
566         CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)         CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
567         CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)         CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
568         resLoc = SQRT(resLoc)         resLoc = SQRT(resLoc)
569    C     Determine, if we need more iterations
570           doLineSearch = resLoc .GE. JFNKresidual
571    C     Limit the maximum number of iterations arbitrarily to four
572           doLineSearch = doLineSearch .AND. l .LT. 4
573    C     For the first iteration du/vIce = 0 and there will be no
574    C     improvement of the residual possible, so we do only the first
575    C     iteration
576           IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
577    C     Only start a linesearch after some Newton iterations
578           IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
579    C     Increment counter
580           l = l + 1
581  C     some output diagnostics  C     some output diagnostics
582         IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN         IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
583          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
584          WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')          WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
585       &       ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',       &       ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
586       &       'facLS, JFNKresidual, resLoc = ',       &       'facLS, JFNKresidual, resLoc = ',
587       &        newtonIter, l, facLS, JFNKresidual, resLoc       &        newtonIter, l, facLS, JFNKresidual, resLoc
# Line 532  C     iterations, 0.25*du/vIce in the se Line 597  C     iterations, 0.25*du/vIce in the se
597  C     This is the new residual  C     This is the new residual
598        JFNKresidual = resLoc        JFNKresidual = resLoc
599    
600  #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */  #endif /* SEAICE_ALLOW_JFNK */
601    
602        RETURN        RETURN
603        END        END

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.31

  ViewVC Help
Powered by ViewVC 1.1.22