2 |
C $Name$ |
C $Name$ |
3 |
|
|
4 |
#include "SEAICE_OPTIONS.h" |
#include "SEAICE_OPTIONS.h" |
5 |
|
#ifdef ALLOW_AUTODIFF |
6 |
|
# include "AUTODIFF_OPTIONS.h" |
7 |
|
#endif |
8 |
|
|
9 |
|
C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: |
10 |
|
C-- Contents |
11 |
|
C-- o SEAICE_JFNK |
12 |
|
C-- o SEAICE_JFNK_UPDATE |
13 |
|
|
14 |
CBOP |
CBOP |
15 |
C !ROUTINE: SEAICE_JFNK |
C !ROUTINE: SEAICE_JFNK |
18 |
|
|
19 |
C !DESCRIPTION: \bv |
C !DESCRIPTION: \bv |
20 |
C *==========================================================* |
C *==========================================================* |
21 |
C | SUBROUTINE SEAICE_JFKF |
C | SUBROUTINE SEAICE_JFNK |
22 |
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
23 |
C | following J.-F. Lemieux et al. Improving the numerical |
C | following J.-F. Lemieux et al. Improving the numerical |
24 |
C | convergence of viscous-plastic sea ice models with the |
C | convergence of viscous-plastic sea ice models with the |
56 |
INTEGER myIter |
INTEGER myIter |
57 |
INTEGER myThid |
INTEGER myThid |
58 |
|
|
59 |
#if ( (defined SEAICE_CGRID) && \ |
#ifdef SEAICE_ALLOW_JFNK |
|
(defined SEAICE_ALLOW_JFNK) && \ |
|
|
(defined SEAICE_ALLOW_DYNAMICS) ) |
|
60 |
C !FUNCTIONS: |
C !FUNCTIONS: |
61 |
LOGICAL DIFFERENT_MULTIPLE |
LOGICAL DIFFERENT_MULTIPLE |
62 |
EXTERNAL DIFFERENT_MULTIPLE |
EXTERNAL DIFFERENT_MULTIPLE |
63 |
|
|
64 |
|
C !LOCAL VARIABLES: |
65 |
|
C === Local variables === |
66 |
C i,j,bi,bj :: loop indices |
C i,j,bi,bj :: loop indices |
67 |
INTEGER i,j,bi,bj |
INTEGER i,j,bi,bj |
68 |
C loop indices |
C loop indices |
69 |
INTEGER newtonIter |
INTEGER newtonIter |
70 |
INTEGER krylovIter, krylovFails |
INTEGER krylovIter, krylovFails |
71 |
INTEGER totalKrylovItersLoc |
INTEGER totalKrylovItersLoc, totalNewtonItersLoc |
72 |
C FGMRES flag that determines amount of output messages of fgmres |
C FGMRES flag that determines amount of output messages of fgmres |
73 |
INTEGER iOutFGMRES |
INTEGER iOutFGMRES |
74 |
C FGMRES flag that indicates what fgmres wants us to do next |
C FGMRES flag that indicates what fgmres wants us to do next |
75 |
INTEGER iCode |
INTEGER iCode |
76 |
_RL JFNKresidual, JFNKresidualTile(nSx,nSy) |
_RL JFNKresidual |
77 |
_RL JFNKresidualKm1 |
_RL JFNKresidualKm1 |
78 |
C parameters to compute convergence criterion |
C parameters to compute convergence criterion |
79 |
_RL phi_e, alp_e, JFNKgamma_lin |
_RL JFNKgamma_lin |
80 |
_RL FGMRESeps |
_RL FGMRESeps |
81 |
_RL JFNKtol |
_RL JFNKtol |
82 |
C |
C backward differences extrapolation factors |
83 |
|
_RL bdfFac, bdfAlpha |
84 |
|
C |
85 |
_RL recip_deltaT |
_RL recip_deltaT |
86 |
LOGICAL JFNKconverged, krylovConverged |
LOGICAL JFNKconverged, krylovConverged |
87 |
LOGICAL writeNow |
LOGICAL writeNow |
88 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
89 |
C |
|
90 |
C u/vIceRes :: residual of sea-ice momentum equations |
C u/vIceRes :: residual of sea-ice momentum equations |
91 |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
92 |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
93 |
|
C extra time level required for backward difference time stepping |
94 |
|
_RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
95 |
|
_RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
96 |
C du/vIce :: ice velocity increment to be added to u/vIce |
C du/vIce :: ice velocity increment to be added to u/vIce |
97 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
98 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
99 |
C precomputed (= constant per Newton iteration) versions of |
C precomputed (= constant per Newton iteration) versions of |
100 |
C zeta, eta, and DWATN, press |
C zeta, eta, and DWATN, press |
101 |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
102 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
116 |
recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn |
recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn |
117 |
|
|
118 |
iOutFGMRES=0 |
iOutFGMRES=0 |
119 |
C iOutFgmres=1 gives a little bit of output |
C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration |
120 |
IF ( debugLevel.GE.debLevA .AND. |
IF ( debugLevel.GE.debLevC .AND. |
121 |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
122 |
& iOutFGMRES=1 |
& iOutFGMRES=1 |
123 |
|
|
124 |
C |
C backward difference extrapolation factors |
125 |
|
bdfFac = 0. _d 0 |
126 |
|
IF ( SEAICEuseBDF2 ) THEN |
127 |
|
IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN |
128 |
|
bdfFac = 0. _d 0 |
129 |
|
ELSE |
130 |
|
bdfFac = 0.5 _d 0 |
131 |
|
ENDIF |
132 |
|
ENDIF |
133 |
|
bdfAlpha = 1. _d 0 + bdfFac |
134 |
|
|
135 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
136 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
137 |
DO J=1-Oly,sNy+Oly |
DO J=1-OLy,sNy+OLy |
138 |
DO I=1-Olx,sNx+Olx |
DO I=1-OLx,sNx+OLx |
139 |
uIceRes(I,J,bi,bj) = 0. _d 0 |
uIceRes(I,J,bi,bj) = 0. _d 0 |
140 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
141 |
duIce (I,J,bi,bj) = 0. _d 0 |
duIce (I,J,bi,bj) = 0. _d 0 |
142 |
dvIce (I,J,bi,bj) = 0. _d 0 |
dvIce (I,J,bi,bj) = 0. _d 0 |
143 |
|
ENDDO |
144 |
|
ENDDO |
145 |
|
C cycle ice velocities |
146 |
|
DO J=1-OLy,sNy+OLy |
147 |
|
DO I=1-OLx,sNx+OLx |
148 |
|
duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha |
149 |
|
& + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac |
150 |
|
dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha |
151 |
|
& + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac |
152 |
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
153 |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
154 |
ENDDO |
ENDDO |
155 |
ENDDO |
ENDDO |
156 |
|
C As long as IMEX is not properly implemented leave this commented out |
157 |
|
CML IF ( .NOT.SEAICEuseIMEX ) THEN |
158 |
C Compute things that do no change during the Newton iteration: |
C Compute things that do no change during the Newton iteration: |
159 |
C sea-surface tilt and wind stress: |
C sea-surface tilt and wind stress: |
160 |
C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT |
C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT |
161 |
DO J=1-Oly,sNy+Oly |
DO J=1-OLy,sNy+OLy |
162 |
DO I=1-Olx,sNx+Olx |
DO I=1-OLx,sNx+OLx |
163 |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
164 |
& + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT |
& + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT |
165 |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
166 |
& + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT |
& + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT |
167 |
ENDDO |
ENDDO |
168 |
ENDDO |
ENDDO |
169 |
|
CML ENDIF |
170 |
ENDDO |
ENDDO |
171 |
ENDDO |
ENDDO |
172 |
C Start nonlinear Newton iteration: outer loop iteration |
C Start nonlinear Newton iteration: outer loop iteration |
175 |
newtonIter = newtonIter + 1 |
newtonIter = newtonIter + 1 |
176 |
C Compute initial residual F(u), (includes computation of global |
C Compute initial residual F(u), (includes computation of global |
177 |
C variables DWATN, zeta, and eta) |
C variables DWATN, zeta, and eta) |
178 |
CALL SEAICE_CALC_RESIDUAL( |
IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( |
179 |
I uIce, vIce, |
I duIce, dvIce, |
180 |
O uIceRes, vIceRes, |
U uIce, vIce, JFNKresidual, |
181 |
I newtonIter, 0, myTime, myIter, myThid ) |
O uIceRes, vIceRes, |
182 |
CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid) |
I newtonIter, myTime, myIter, myThid ) |
183 |
C local copies of precomputed coefficients that are to stay |
C local copies of precomputed coefficients that are to stay |
184 |
C constant for the preconditioner |
C constant for the preconditioner |
185 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
186 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
187 |
DO j=1-Oly,sNy+Oly |
DO j=1-OLy,sNy+OLy |
188 |
DO i=1-Olx,sNx+Olx |
DO i=1-OLx,sNx+OLx |
189 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
190 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
191 |
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
194 |
ENDDO |
ENDDO |
195 |
ENDDO |
ENDDO |
196 |
ENDDO |
ENDDO |
|
C |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
|
|
JFNKresidualTile(bi,bj) = 0. _d 0 |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
#ifdef CG2D_SINGLECPU_SUM |
|
|
JFNKlocalBuf(I,J,bi,bj) = |
|
|
#else |
|
|
JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) + |
|
|
#endif |
|
|
& uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) + |
|
|
& vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj) |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
JFNKresidual = 0. _d 0 |
|
|
#ifdef CG2D_SINGLECPU_SUM |
|
|
CALL GLOBAL_SUM_SINGLECPU_RL( |
|
|
& JFNKlocalBuf,JFNKresidual, 0, 0, myThid) |
|
|
#else |
|
|
CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid ) |
|
|
#endif |
|
|
JFNKresidual = SQRT(JFNKresidual) |
|
197 |
C compute convergence criterion for linear preconditioned FGMRES |
C compute convergence criterion for linear preconditioned FGMRES |
198 |
JFNKgamma_lin = JFNKgamma_lin_max |
JFNKgamma_lin = JFNKgamma_lin_max |
199 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.100 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter |
200 |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
201 |
C Eisenstat, 1996, equ.(2.6) |
C Eisenstat and Walker (1996), eq.(2.6) |
202 |
phi_e = 1. _d 0 |
JFNKgamma_lin = SEAICE_JFNKphi |
203 |
alp_e = 1. _d 0 |
& *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha |
|
JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e |
|
204 |
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
205 |
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
206 |
ENDIF |
ENDIF |
207 |
C save the residual for the next iteration |
C save the residual for the next iteration |
208 |
JFNKresidualKm1 = JFNKresidual |
JFNKresidualKm1 = JFNKresidual |
209 |
C |
|
210 |
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
211 |
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
212 |
C down. |
C down. |
214 |
C in that routine |
C in that routine |
215 |
krylovIter = 0 |
krylovIter = 0 |
216 |
iCode = 0 |
iCode = 0 |
217 |
IF ( debugLevel.GE.debLevA ) THEN |
|
|
_BEGIN_MASTER( myThid ) |
|
|
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
|
|
& ' S/R SEAICE_JFNK: newtonIter,', |
|
|
& ' total newtonIter, JFNKgamma_lin, initial norm = ', |
|
|
& newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter, |
|
|
& JFNKgamma_lin, JFNKresidual |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT, myThid ) |
|
|
_END_MASTER( myThid ) |
|
|
ENDIF |
|
|
C |
|
218 |
JFNKconverged = JFNKresidual.LT.JFNKtol |
JFNKconverged = JFNKresidual.LT.JFNKtol |
219 |
C |
|
220 |
C do Krylov loop only if convergence is not reached |
C do Krylov loop only if convergence is not reached |
221 |
C |
|
222 |
IF ( .NOT.JFNKconverged ) THEN |
IF ( .NOT.JFNKconverged ) THEN |
223 |
C |
|
224 |
C start Krylov iteration (FGMRES) |
C start Krylov iteration (FGMRES) |
225 |
C |
|
226 |
krylovConverged = .FALSE. |
krylovConverged = .FALSE. |
227 |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
228 |
DO WHILE ( .NOT.krylovConverged ) |
DO WHILE ( .NOT.krylovConverged ) |
229 |
C solution vector sol = du/vIce |
C solution vector sol = du/vIce |
230 |
C residual vector (rhs) Fu = u/vIceRes |
C residual vector (rhs) Fu = u/vIceRes |
231 |
C output work vectors wk1, -> input work vector wk2 |
C output work vectors wk1, -> input work vector wk2 |
232 |
C |
|
233 |
CALL SEAICE_FGMRES_DRIVER( |
CALL SEAICE_FGMRES_DRIVER( |
234 |
I uIceRes, vIceRes, |
I uIceRes, vIceRes, |
235 |
U duIce, dvIce, iCode, |
U duIce, dvIce, iCode, |
236 |
I FGMRESeps, iOutFGMRES, |
I FGMRESeps, iOutFGMRES, |
237 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
239 |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
240 |
C iteration |
C iteration |
241 |
IF (iCode.EQ.1) THEN |
IF (iCode.EQ.1) THEN |
242 |
C Call preconditioner |
C Call preconditioner |
243 |
IF ( SOLV_MAX_ITERS .GT. 0 ) |
IF ( SOLV_MAX_ITERS .GT. 0 ) |
244 |
& CALL SEAICE_PRECONDITIONER( |
& CALL SEAICE_PRECONDITIONER( |
245 |
U duIce, dvIce, |
U duIce, dvIce, |
246 |
I zetaPre, etaPre, etaZpre, dwatPre, |
I zetaPre, etaPre, etaZpre, dwatPre, |
247 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
248 |
ELSEIF (iCode.GE.2) THEN |
ELSEIF (iCode.GE.2) THEN |
249 |
C Compute Jacobian times vector |
C Compute Jacobian times vector |
250 |
CALL SEAICE_JACVEC( |
CALL SEAICE_JACVEC( |
251 |
I uIce, vIce, uIceRes, vIceRes, |
I uIce, vIce, uIceRes, vIceRes, |
252 |
U duIce, dvIce, |
U duIce, dvIce, |
253 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
254 |
ENDIF |
ENDIF |
255 |
krylovConverged = iCode.EQ.0 |
krylovConverged = iCode.EQ.0 |
259 |
C some output diagnostics |
C some output diagnostics |
260 |
IF ( debugLevel.GE.debLevA ) THEN |
IF ( debugLevel.GE.debLevA ) THEN |
261 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
262 |
|
totalNewtonItersLoc = |
263 |
|
& SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter |
264 |
|
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
265 |
|
& ' S/R SEAICE_JFNK: Newton iterate / total, ', |
266 |
|
& 'JFNKgamma_lin, initial norm = ', |
267 |
|
& newtonIter, totalNewtonItersLoc, |
268 |
|
& JFNKgamma_lin,JFNKresidual |
269 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
270 |
|
& SQUEEZE_RIGHT, myThid ) |
271 |
WRITE(msgBuf,'(3(A,I6))') |
WRITE(msgBuf,'(3(A,I6))') |
272 |
& ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter, |
& ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, |
273 |
& ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter, |
& ' / ', totalNewtonItersLoc, |
274 |
& ', Nb. of FGMRES iterations = ', krylovIter |
& ', Nb. of FGMRES iterations = ', krylovIter |
275 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
276 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
279 |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
280 |
krylovFails = krylovFails + 1 |
krylovFails = krylovFails + 1 |
281 |
ENDIF |
ENDIF |
282 |
|
C Set the stopping criterion for the Newton iteration and the |
283 |
|
C criterion for the transition from accurate to approximate FGMRES |
284 |
|
IF ( newtonIter .EQ. 1 ) THEN |
285 |
|
JFNKtol=JFNKgamma_nonlin*JFNKresidual |
286 |
|
IF ( JFNKres_tFac .NE. UNSET_RL ) |
287 |
|
& JFNKres_t = JFNKresidual * JFNKres_tFac |
288 |
|
ENDIF |
289 |
C Update linear solution vector and return to Newton iteration |
C Update linear solution vector and return to Newton iteration |
290 |
|
C Do a linesearch if necessary, and compute a new residual. |
291 |
|
C Note that it should be possible to do the following operations |
292 |
|
C at the beginning of the Newton iteration, thereby saving us from |
293 |
|
C the extra call of seaice_jfnk_update, but unfortunately that |
294 |
|
C changes the results, so we leave the stuff here for now. |
295 |
|
CALL SEAICE_JFNK_UPDATE( |
296 |
|
I duIce, dvIce, |
297 |
|
U uIce, vIce, JFNKresidual, |
298 |
|
O uIceRes, vIceRes, |
299 |
|
I newtonIter, myTime, myIter, myThid ) |
300 |
|
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
301 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
302 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
303 |
DO J=1-Oly,sNy+Oly |
DO J=1-OLy,sNy+OLy |
304 |
DO I=1-Olx,sNx+Olx |
DO I=1-OLx,sNx+OLx |
|
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj) |
|
|
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj) |
|
|
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
|
305 |
duIce(I,J,bi,bj)= 0. _d 0 |
duIce(I,J,bi,bj)= 0. _d 0 |
306 |
dvIce(I,J,bi,bj)= 0. _d 0 |
dvIce(I,J,bi,bj)= 0. _d 0 |
307 |
ENDDO |
ENDDO |
308 |
ENDDO |
ENDDO |
309 |
ENDDO |
ENDDO |
310 |
ENDDO |
ENDDO |
|
C Set the stopping criterion for the Newton iteration |
|
|
IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual |
|
311 |
ENDIF |
ENDIF |
312 |
C end of Newton iterate |
C end of Newton iterate |
313 |
ENDDO |
ENDDO |
314 |
C |
|
315 |
C-- Output diagnostics |
C-- Output diagnostics |
316 |
C |
|
317 |
IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN |
IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN |
318 |
C Count iterations |
C Count iterations |
319 |
totalJFNKtimeSteps = totalJFNKtimeSteps + 1 |
totalJFNKtimeSteps = totalJFNKtimeSteps + 1 |
322 |
C Record failure |
C Record failure |
323 |
totalKrylovFails = totalKrylovFails + krylovFails |
totalKrylovFails = totalKrylovFails + krylovFails |
324 |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
325 |
totalNewtonFails = totalNewtonFails + 1 |
totalNewtonFails = totalNewtonFails + 1 |
326 |
ENDIF |
ENDIF |
327 |
ENDIF |
ENDIF |
328 |
C Decide whether it is time to dump and reset the counter |
C Decide whether it is time to dump and reset the counter |
329 |
writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, |
writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, |
330 |
& myTime+deltaTClock, deltaTClock) |
& myTime+deltaTClock, deltaTClock) |
331 |
#ifdef ALLOW_CAL |
#ifdef ALLOW_CAL |
332 |
IF ( useCAL ) THEN |
IF ( useCAL ) THEN |
333 |
CALL CAL_TIME2DUMP( |
CALL CAL_TIME2DUMP( |
334 |
I zeroRL, SEAICE_monFreq, deltaTClock, |
I zeroRL, SEAICE_monFreq, deltaTClock, |
335 |
U writeNow, |
U writeNow, |
336 |
I myTime+deltaTclock, myIter+1, myThid ) |
I myTime+deltaTclock, myIter+1, myThid ) |
338 |
#endif |
#endif |
339 |
IF ( writeNow ) THEN |
IF ( writeNow ) THEN |
340 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
341 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
342 |
&' // =======================================================' |
&' // =======================================================' |
343 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
344 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
345 |
WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' |
WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' |
346 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
347 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
348 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
349 |
&' // =======================================================' |
&' // =======================================================' |
350 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
351 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
352 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
353 |
& ' %JFNK_MON: time step = ', myIter+1 |
& ' %JFNK_MON: time step = ', myIter+1 |
354 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
355 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
356 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
357 |
& ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps |
& ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps |
358 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
359 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
360 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
361 |
& ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters |
& ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters |
362 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
363 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
364 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
365 |
& ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters |
& ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters |
366 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
367 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
368 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
369 |
& ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails |
& ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails |
370 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
371 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
372 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
373 |
& ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails |
& ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails |
374 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
375 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
376 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
377 |
&' // =======================================================' |
&' // =======================================================' |
378 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
379 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
380 |
WRITE(msgBuf,'(A)') ' // End JFNK statistics' |
WRITE(msgBuf,'(A)') ' // End JFNK statistics' |
381 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
382 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
383 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
384 |
&' // =======================================================' |
&' // =======================================================' |
385 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
386 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
397 |
IF ( debugLevel.GE.debLevA ) THEN |
IF ( debugLevel.GE.debLevA ) THEN |
398 |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
399 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
400 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
401 |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
402 |
& myIter+1 |
& myIter+1 |
403 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
406 |
ENDIF |
ENDIF |
407 |
IF ( krylovFails .GT. 0 ) THEN |
IF ( krylovFails .GT. 0 ) THEN |
408 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
409 |
WRITE(msgBuf,'(A,I4,A,I10)') |
WRITE(msgBuf,'(A,I4,A,I10)') |
410 |
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
411 |
& krylovFails, ' times in timestep ', myIter+1 |
& krylovFails, ' times in timestep ', myIter+1 |
412 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
414 |
_END_MASTER( myThid ) |
_END_MASTER( myThid ) |
415 |
ENDIF |
ENDIF |
416 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
417 |
WRITE(msgBuf,'(A,I6,A,I10)') |
WRITE(msgBuf,'(A,I6,A,I10)') |
418 |
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
419 |
& totalKrylovItersLoc, ' in timestep ', myIter+1 |
& totalKrylovItersLoc, ' in timestep ', myIter+1 |
420 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
422 |
_END_MASTER( myThid ) |
_END_MASTER( myThid ) |
423 |
ENDIF |
ENDIF |
424 |
|
|
425 |
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
RETURN |
426 |
|
END |
427 |
|
|
428 |
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
429 |
|
CBOP |
430 |
|
C !ROUTINE: SEAICE_JFNK_UPDATE |
431 |
|
C !INTERFACE: |
432 |
|
|
433 |
|
SUBROUTINE SEAICE_JFNK_UPDATE( |
434 |
|
I duIce, dvIce, |
435 |
|
U uIce, vIce, JFNKresidual, |
436 |
|
O uIceRes, vIceRes, |
437 |
|
I newtonIter, myTime, myIter, myThid ) |
438 |
|
|
439 |
|
C !DESCRIPTION: \bv |
440 |
|
C *==========================================================* |
441 |
|
C | SUBROUTINE SEAICE_JFNK_UPDATE |
442 |
|
C | o Update velocities with incremental solutions of FGMRES |
443 |
|
C | o compute residual of updated solutions and do |
444 |
|
C | o linesearch: |
445 |
|
C | reduce update until residual is smaller than previous |
446 |
|
C | one (input) |
447 |
|
C *==========================================================* |
448 |
|
C | written by Martin Losch, Jan 2013 |
449 |
|
C *==========================================================* |
450 |
|
C \ev |
451 |
|
|
452 |
|
C !USES: |
453 |
|
IMPLICIT NONE |
454 |
|
|
455 |
|
C === Global variables === |
456 |
|
#include "SIZE.h" |
457 |
|
#include "EEPARAMS.h" |
458 |
|
#include "PARAMS.h" |
459 |
|
#include "SEAICE_SIZE.h" |
460 |
|
#include "SEAICE_PARAMS.h" |
461 |
|
|
462 |
|
C !INPUT/OUTPUT PARAMETERS: |
463 |
|
C === Routine arguments === |
464 |
|
C myTime :: Simulation time |
465 |
|
C myIter :: Simulation timestep number |
466 |
|
C myThid :: my Thread Id. number |
467 |
|
C newtonIter :: current iterate of Newton iteration |
468 |
|
_RL myTime |
469 |
|
INTEGER myIter |
470 |
|
INTEGER myThid |
471 |
|
INTEGER newtonIter |
472 |
|
C JFNKresidual :: Residual at the beginning of the FGMRES iteration, |
473 |
|
C changes with newtonIter (updated) |
474 |
|
_RL JFNKresidual |
475 |
|
C du/vIce :: ice velocity increment to be added to u/vIce (input) |
476 |
|
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
477 |
|
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
478 |
|
C u/vIce :: ice velocity increment to be added to u/vIce (updated) |
479 |
|
_RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
480 |
|
_RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
481 |
|
C u/vIceRes :: residual of sea-ice momentum equations (output) |
482 |
|
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
483 |
|
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
484 |
|
|
485 |
|
C !LOCAL VARIABLES: |
486 |
|
C === Local variables === |
487 |
|
C i,j,bi,bj :: loop indices |
488 |
|
INTEGER i,j,bi,bj |
489 |
|
INTEGER l |
490 |
|
_RL resLoc, facLS |
491 |
|
LOGICAL doLineSearch |
492 |
|
C nVec :: size of the input vector(s) |
493 |
|
C resTmp :: vector version of the residuals |
494 |
|
INTEGER nVec |
495 |
|
PARAMETER ( nVec = 2*sNx*sNy ) |
496 |
|
_RL resTmp (nVec,1,nSx,nSy) |
497 |
|
|
498 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
499 |
|
CEOP |
500 |
|
|
501 |
|
C Initialise some local variables |
502 |
|
l = 0 |
503 |
|
resLoc = JFNKresidual |
504 |
|
facLS = 1. _d 0 |
505 |
|
doLineSearch = .TRUE. |
506 |
|
DO WHILE ( doLineSearch ) |
507 |
|
C Create update |
508 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
509 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
510 |
|
DO J=1-OLy,sNy+OLy |
511 |
|
DO I=1-OLx,sNx+OLx |
512 |
|
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) |
513 |
|
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) |
514 |
|
ENDDO |
515 |
|
ENDDO |
516 |
|
ENDDO |
517 |
|
ENDDO |
518 |
|
C Compute current residual F(u), (includes re-computation of global |
519 |
|
C variables DWATN, zeta, and eta, i.e. they are different after this) |
520 |
|
CALL SEAICE_CALC_RESIDUAL( |
521 |
|
I uIce, vIce, |
522 |
|
O uIceRes, vIceRes, |
523 |
|
I newtonIter, 0, myTime, myIter, myThid ) |
524 |
|
C Important: Compute the norm of the residual using the same scalar |
525 |
|
C product that SEAICE_FGMRES does |
526 |
|
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
527 |
|
CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) |
528 |
|
resLoc = SQRT(resLoc) |
529 |
|
C Determine, if we need more iterations |
530 |
|
doLineSearch = resLoc .GE. JFNKresidual |
531 |
|
C Limit the maximum number of iterations arbitrarily to four |
532 |
|
doLineSearch = doLineSearch .AND. l .LT. 4 |
533 |
|
C For the first iteration du/vIce = 0 and there will be no |
534 |
|
C improvement of the residual possible, so we do only the first |
535 |
|
C iteration |
536 |
|
IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. |
537 |
|
C Only start a linesearch after some Newton iterations |
538 |
|
IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. |
539 |
|
C Increment counter |
540 |
|
l = l + 1 |
541 |
|
C some output diagnostics |
542 |
|
IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN |
543 |
|
_BEGIN_MASTER( myThid ) |
544 |
|
WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') |
545 |
|
& ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', |
546 |
|
& 'facLS, JFNKresidual, resLoc = ', |
547 |
|
& newtonIter, l, facLS, JFNKresidual, resLoc |
548 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
549 |
|
& SQUEEZE_RIGHT, myThid ) |
550 |
|
_END_MASTER( myThid ) |
551 |
|
ENDIF |
552 |
|
C Get ready for the next iteration: after adding du/vIce in the first |
553 |
|
C iteration, we substract 0.5*du/vIce from u/vIce in the next |
554 |
|
C iterations, 0.25*du/vIce in the second, etc. |
555 |
|
facLS = - 0.5 _d 0 * ABS(facLS) |
556 |
|
ENDDO |
557 |
|
C This is the new residual |
558 |
|
JFNKresidual = resLoc |
559 |
|
|
560 |
|
#endif /* SEAICE_ALLOW_JFNK */ |
561 |
|
|
562 |
RETURN |
RETURN |
563 |
END |
END |