/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Diff of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.11 by mlosch, Mon Dec 3 15:49:17 2012 UTC revision 1.22 by mlosch, Tue Apr 23 08:40:06 2013 UTC
# Line 3  C $Name$ Line 3  C $Name$
3    
4  #include "SEAICE_OPTIONS.h"  #include "SEAICE_OPTIONS.h"
5    
6    C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
7    C--   Contents
8    C--   o SEAICE_JFNK
9    C--   o SEAICE_JFNK_UPDATE
10    
11  CBOP  CBOP
12  C     !ROUTINE: SEAICE_JFNK  C     !ROUTINE: SEAICE_JFNK
13  C     !INTERFACE:  C     !INTERFACE:
# Line 10  C     !INTERFACE: Line 15  C     !INTERFACE:
15    
16  C     !DESCRIPTION: \bv  C     !DESCRIPTION: \bv
17  C     *==========================================================*  C     *==========================================================*
18  C     | SUBROUTINE SEAICE_JFKF  C     | SUBROUTINE SEAICE_JFNK
19  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver
20  C     |   following J.-F. Lemieux et al. Improving the numerical  C     |   following J.-F. Lemieux et al. Improving the numerical
21  C     |   convergence of viscous-plastic sea ice models with the  C     |   convergence of viscous-plastic sea ice models with the
# Line 48  C     myThid :: my Thread Id. number Line 53  C     myThid :: my Thread Id. number
53        INTEGER myIter        INTEGER myIter
54        INTEGER myThid        INTEGER myThid
55    
56  #if ( (defined SEAICE_CGRID) && \  #ifdef SEAICE_ALLOW_JFNK
       (defined SEAICE_ALLOW_JFNK) && \  
       (defined SEAICE_ALLOW_DYNAMICS) )  
57  C     !FUNCTIONS:  C     !FUNCTIONS:
58        LOGICAL  DIFFERENT_MULTIPLE        LOGICAL  DIFFERENT_MULTIPLE
59        EXTERNAL DIFFERENT_MULTIPLE        EXTERNAL DIFFERENT_MULTIPLE
60    
61    C     !LOCAL VARIABLES:
62    C     === Local variables ===
63  C     i,j,bi,bj :: loop indices  C     i,j,bi,bj :: loop indices
64        INTEGER i,j,bi,bj        INTEGER i,j,bi,bj
65  C     loop indices  C     loop indices
66        INTEGER newtonIter        INTEGER newtonIter
67        INTEGER krylovIter, krylovFails        INTEGER krylovIter, krylovFails
68        INTEGER totalKrylovItersLoc        INTEGER totalKrylovItersLoc, totalNewtonItersLoc
69  C     FGMRES flag that determines amount of output messages of fgmres  C     FGMRES flag that determines amount of output messages of fgmres
70        INTEGER iOutFGMRES        INTEGER iOutFGMRES
71  C     FGMRES flag that indicates what fgmres wants us to do next  C     FGMRES flag that indicates what fgmres wants us to do next
72        INTEGER iCode        INTEGER iCode
73        _RL     JFNKresidual, JFNKresidualTile(nSx,nSy)        _RL     JFNKresidual
74        _RL     JFNKresidualKm1        _RL     JFNKresidualKm1
75  C     parameters to compute convergence criterion  C     parameters to compute convergence criterion
76        _RL     phi_e, alp_e, JFNKgamma_lin        _RL     JFNKgamma_lin
77        _RL     FGMRESeps        _RL     FGMRESeps
78        _RL     JFNKtol        _RL     JFNKtol
79  C      
80        _RL     recip_deltaT        _RL     recip_deltaT
81        LOGICAL JFNKconverged, krylovConverged        LOGICAL JFNKconverged, krylovConverged
82        LOGICAL writeNow        LOGICAL writeNow
83        CHARACTER*(MAX_LEN_MBUF) msgBuf        CHARACTER*(MAX_LEN_MBUF) msgBuf
84  C  
85  C     u/vIceRes :: residual of sea-ice momentum equations  C     u/vIceRes :: residual of sea-ice momentum equations
86        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
87        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
88  C     du/vIce   :: ice velocity increment to be added to u/vIce  C     du/vIce   :: ice velocity increment to be added to u/vIce
89        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
90        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
91  C     precomputed (= constant per Newton iteration) versions of  C     precomputed (= constant per Newton iteration) versions of
92  C     zeta, eta, and DWATN, press  C     zeta, eta, and DWATN, press
93        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
94        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
# Line 103  C     Initialise Line 108  C     Initialise
108        recip_deltaT        = 1. _d 0 / SEAICE_deltaTdyn        recip_deltaT        = 1. _d 0 / SEAICE_deltaTdyn
109    
110        iOutFGMRES=0        iOutFGMRES=0
111  C     iOutFgmres=1 gives a little bit of output  C     with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
112        IF ( debugLevel.GE.debLevA .AND.        IF ( debugLevel.GE.debLevC .AND.
113       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
114       &     iOutFGMRES=1       &     iOutFGMRES=1
115    
 C      
116        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
117         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
118          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
119           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
120            uIceRes(I,J,bi,bj) = 0. _d 0            uIceRes(I,J,bi,bj) = 0. _d 0
121            vIceRes(I,J,bi,bj) = 0. _d 0            vIceRes(I,J,bi,bj) = 0. _d 0
122            duIce  (I,J,bi,bj) = 0. _d 0            duIce  (I,J,bi,bj) = 0. _d 0
# Line 122  C Line 126  C
126           ENDDO           ENDDO
127          ENDDO          ENDDO
128  C     Compute things that do no change during the Newton iteration:  C     Compute things that do no change during the Newton iteration:
129  C     sea-surface tilt and wind stress:  C     sea-surface tilt and wind stress:
130  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT
131          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
132           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
133            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
134       &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT
135            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
136       &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT
137           ENDDO           ENDDO
138          ENDDO          ENDDO
139         ENDDO         ENDDO
# Line 140  C     Start nonlinear Newton iteration: Line 144  C     Start nonlinear Newton iteration:
144         newtonIter = newtonIter + 1         newtonIter = newtonIter + 1
145  C     Compute initial residual F(u), (includes computation of global  C     Compute initial residual F(u), (includes computation of global
146  C     variables DWATN, zeta, and eta)  C     variables DWATN, zeta, and eta)
147         CALL SEAICE_CALC_RESIDUAL(         IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
148       I      uIce, vIce,       I      duIce, dvIce,
149       O      uIceRes, vIceRes,       U      uIce, vIce, JFNKresidual,
150       I      newtonIter, 0, myTime, myIter, myThid )       O      uIceRes, vIceRes,
151         CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)       I      newtonIter, myTime, myIter, myThid )
152  C     local copies of precomputed coefficients that are to stay  C     local copies of precomputed coefficients that are to stay
153  C     constant for the preconditioner  C     constant for the preconditioner
154         DO bj=myByLo(myThid),myByHi(myThid)         DO bj=myByLo(myThid),myByHi(myThid)
155          DO bi=myBxLo(myThid),myBxHi(myThid)          DO bi=myBxLo(myThid),myBxHi(myThid)
156           DO j=1-Oly,sNy+Oly           DO j=1-OLy,sNy+OLy
157            DO i=1-Olx,sNx+Olx            DO i=1-OLx,sNx+OLx
158             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)
159              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)
160             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)
# Line 159  C     constant for the preconditioner Line 163  C     constant for the preconditioner
163           ENDDO           ENDDO
164          ENDDO          ENDDO
165         ENDDO         ENDDO
 C      
        DO bj=myByLo(myThid),myByHi(myThid)  
         DO bi=myBxLo(myThid),myBxHi(myThid)  
          JFNKresidualTile(bi,bj) = 0. _d 0  
          DO J=1,sNy  
           DO I=1,sNx  
 #ifdef CG2D_SINGLECPU_SUM  
            JFNKlocalBuf(I,J,bi,bj) =  
 #else  
            JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +  
 #endif  
      &          uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +  
      &          vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)  
           ENDDO  
          ENDDO  
         ENDDO  
        ENDDO  
        JFNKresidual = 0. _d 0  
 #ifdef CG2D_SINGLECPU_SUM  
        CALL GLOBAL_SUM_SINGLECPU_RL(  
      &         JFNKlocalBuf,JFNKresidual, 0, 0, myThid)  
 #else  
        CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )  
 #endif  
        JFNKresidual = SQRT(JFNKresidual)  
166  C     compute convergence criterion for linear preconditioned FGMRES  C     compute convergence criterion for linear preconditioned FGMRES
167         JFNKgamma_lin = JFNKgamma_lin_max         JFNKgamma_lin = JFNKgamma_lin_max
168         IF ( newtonIter.GT.1.AND.newtonIter.LE.100         IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
169       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN
170  C     Eisenstat, 1996, equ.(2.6)        C     Eisenstat and Walker (1996), eq.(2.6)
171          phi_e = 1. _d 0          JFNKgamma_lin = SEAICE_JFNKphi
172          alp_e = 1. _d 0       &       *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
         JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e  
173          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
174          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
175         ENDIF         ENDIF
176  C     save the residual for the next iteration  C     save the residual for the next iteration
177         JFNKresidualKm1 = JFNKresidual         JFNKresidualKm1 = JFNKresidual
178  C  
179  C     The Krylov iteration using FGMRES, the preconditioner is LSOR  C     The Krylov iteration using FGMRES, the preconditioner is LSOR
180  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped
181  C     down.  C     down.
# Line 205  C     krylovIter is mapped into "its" in Line 183  C     krylovIter is mapped into "its" in
183  C     in that routine  C     in that routine
184         krylovIter    = 0         krylovIter    = 0
185         iCode         = 0         iCode         = 0
186         IF ( debugLevel.GE.debLevA ) THEN    
         _BEGIN_MASTER( myThid )  
         WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')  
      &       ' S/R SEAICE_JFNK: newtonIter,',  
      &       ' total newtonIter, JFNKgamma_lin, initial norm = ',  
      &       newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,  
      &       JFNKgamma_lin, JFNKresidual  
         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,  
      &       SQUEEZE_RIGHT, myThid )  
         _END_MASTER( myThid )  
        ENDIF  
 C  
187         JFNKconverged = JFNKresidual.LT.JFNKtol         JFNKconverged = JFNKresidual.LT.JFNKtol
188  C  
189  C     do Krylov loop only if convergence is not reached  C     do Krylov loop only if convergence is not reached
190  C  
191         IF ( .NOT.JFNKconverged ) THEN         IF ( .NOT.JFNKconverged ) THEN
192  C  
193  C     start Krylov iteration (FGMRES)  C     start Krylov iteration (FGMRES)
194  C  
195          krylovConverged = .FALSE.          krylovConverged = .FALSE.
196          FGMRESeps = JFNKgamma_lin * JFNKresidual          FGMRESeps = JFNKgamma_lin * JFNKresidual
197          DO WHILE ( .NOT.krylovConverged )          DO WHILE ( .NOT.krylovConverged )
198  C     solution vector sol = du/vIce  C     solution vector sol = du/vIce
199  C     residual vector (rhs) Fu = u/vIceRes  C     residual vector (rhs) Fu = u/vIceRes
200  C     output work vectors wk1, -> input work vector wk2  C     output work vectors wk1, -> input work vector wk2
201  C      
202           CALL SEAICE_FGMRES_DRIVER(           CALL SEAICE_FGMRES_DRIVER(
203       I        uIceRes, vIceRes,       I        uIceRes, vIceRes,
204       U        duIce, dvIce, iCode,       U        duIce, dvIce, iCode,
205       I        FGMRESeps, iOutFGMRES,       I        FGMRESeps, iOutFGMRES,
206       I        newtonIter, krylovIter, myTime, myIter, myThid )       I        newtonIter, krylovIter, myTime, myIter, myThid )
# Line 241  C     FGMRES returns iCode either asking Line 208  C     FGMRES returns iCode either asking
208  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate
209  C     iteration  C     iteration
210           IF (iCode.EQ.1) THEN           IF (iCode.EQ.1) THEN
211  C     Call preconditioner  C     Call preconditioner
212            IF ( SOLV_MAX_ITERS .GT. 0 )            IF ( SOLV_MAX_ITERS .GT. 0 )
213       &         CALL SEAICE_PRECONDITIONER(       &         CALL SEAICE_PRECONDITIONER(
214       U         duIce, dvIce,       U         duIce, dvIce,
215       I         zetaPre, etaPre, etaZpre, dwatPre,       I         zetaPre, etaPre, etaZpre, dwatPre,
216       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
217           ELSEIF (iCode.GE.2) THEN           ELSEIF (iCode.GE.2) THEN
218  C     Compute Jacobian times vector  C     Compute Jacobian times vector
219            CALL SEAICE_JACVEC(            CALL SEAICE_JACVEC(
220       I         uIce, vIce, uIceRes, vIceRes,       I         uIce, vIce, uIceRes, vIceRes,
221       U         duIce, dvIce,         U         duIce, dvIce,
222       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
223           ENDIF           ENDIF
224           krylovConverged = iCode.EQ.0           krylovConverged = iCode.EQ.0
# Line 261  C     End of Krylov iterate Line 228  C     End of Krylov iterate
228  C     some output diagnostics  C     some output diagnostics
229          IF ( debugLevel.GE.debLevA ) THEN          IF ( debugLevel.GE.debLevA ) THEN
230           _BEGIN_MASTER( myThid )           _BEGIN_MASTER( myThid )
231             totalNewtonItersLoc =
232         &        SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter
233             WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
234         &        ' S/R SEAICE_JFNK: Newton iterate / total, ',
235         &        'JFNKgamma_lin, initial norm = ',
236         &        newtonIter, totalNewtonItersLoc,
237         &        JFNKgamma_lin,JFNKresidual
238             CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
239         &        SQUEEZE_RIGHT, myThid )
240           WRITE(msgBuf,'(3(A,I6))')           WRITE(msgBuf,'(3(A,I6))')
241       &        ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,       &        ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
242       &        ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,       &        ' / ', totalNewtonItersLoc,
243       &        ', Nb. of FGMRES iterations = ', krylovIter       &        ', Nb. of FGMRES iterations = ', krylovIter
244           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
245       &        SQUEEZE_RIGHT, myThid )       &        SQUEEZE_RIGHT, myThid )
# Line 272  C     some output diagnostics Line 248  C     some output diagnostics
248          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
249           krylovFails = krylovFails + 1           krylovFails = krylovFails + 1
250          ENDIF          ENDIF
251    C     Set the stopping criterion for the Newton iteration and the
252    C     criterion for the transition from accurate to approximate FGMRES
253            IF ( newtonIter .EQ. 1 ) THEN
254             JFNKtol=JFNKgamma_nonlin*JFNKresidual
255             IF ( JFNKres_tFac .NE. UNSET_RL )
256         &        JFNKres_t = JFNKresidual * JFNKres_tFac
257            ENDIF
258  C     Update linear solution vector and return to Newton iteration  C     Update linear solution vector and return to Newton iteration
259    C     Do a linesearch if necessary, and compute a new residual.
260    C     Note that it should be possible to do the following operations
261    C     at the beginning of the Newton iteration, thereby saving us from
262    C     the extra call of seaice_jfnk_update, but unfortunately that
263    C     changes the results, so we leave the stuff here for now.
264            CALL SEAICE_JFNK_UPDATE(
265         I       duIce, dvIce,
266         U       uIce, vIce, JFNKresidual,
267         O       uIceRes, vIceRes,
268         I       newtonIter, myTime, myIter, myThid )
269    C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
270          DO bj=myByLo(myThid),myByHi(myThid)          DO bj=myByLo(myThid),myByHi(myThid)
271           DO bi=myBxLo(myThid),myBxHi(myThid)           DO bi=myBxLo(myThid),myBxHi(myThid)
272            DO J=1-Oly,sNy+Oly            DO J=1-OLy,sNy+OLy
273             DO I=1-Olx,sNx+Olx             DO I=1-OLx,sNx+OLx
             uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)  
             vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)  
 C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver  
274              duIce(I,J,bi,bj)= 0. _d 0              duIce(I,J,bi,bj)= 0. _d 0
275              dvIce(I,J,bi,bj)= 0. _d 0              dvIce(I,J,bi,bj)= 0. _d 0
276             ENDDO             ENDDO
277            ENDDO            ENDDO
278           ENDDO           ENDDO
279          ENDDO          ENDDO
 C     Set the stopping criterion for the Newton iteration  
         IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual  
280         ENDIF         ENDIF
281  C     end of Newton iterate  C     end of Newton iterate
282        ENDDO        ENDDO
283  C  
284  C--   Output diagnostics  C--   Output diagnostics
285  C  
286        IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN        IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
287  C     Count iterations  C     Count iterations
288         totalJFNKtimeSteps = totalJFNKtimeSteps + 1         totalJFNKtimeSteps = totalJFNKtimeSteps + 1
# Line 302  C     Count iterations Line 291  C     Count iterations
291  C     Record failure  C     Record failure
292         totalKrylovFails   = totalKrylovFails + krylovFails         totalKrylovFails   = totalKrylovFails + krylovFails
293         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
294          totalNewtonFails = totalNewtonFails + 1          totalNewtonFails = totalNewtonFails + 1
295         ENDIF         ENDIF
296        ENDIF        ENDIF
297  C     Decide whether it is time to dump and reset the counter  C     Decide whether it is time to dump and reset the counter
298        writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,        writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
299       &     myTime+deltaTClock, deltaTClock)       &     myTime+deltaTClock, deltaTClock)
300  #ifdef ALLOW_CAL  #ifdef ALLOW_CAL
301        IF ( useCAL ) THEN        IF ( useCAL ) THEN
302         CALL CAL_TIME2DUMP(         CALL CAL_TIME2DUMP(
303       I      zeroRL, SEAICE_monFreq,  deltaTClock,       I      zeroRL, SEAICE_monFreq,  deltaTClock,
304       U      writeNow,       U      writeNow,
305       I      myTime+deltaTclock, myIter+1, myThid )       I      myTime+deltaTclock, myIter+1, myThid )
# Line 318  C     Decide whether it is time to dump Line 307  C     Decide whether it is time to dump
307  #endif  #endif
308        IF ( writeNow ) THEN        IF ( writeNow ) THEN
309         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
310         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
311       &' // ======================================================='       &' // ======================================================='
312         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
313       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
314         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
315         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
316       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
317         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
318       &' // ======================================================='       &' // ======================================================='
319         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
320       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
321         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
322       &      ' %JFNK_MON: time step              = ', myIter+1       &      ' %JFNK_MON: time step              = ', myIter+1
323         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
324       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
325         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
326       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps
327         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
328       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
329         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
330       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters
331         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
332       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
333         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
334       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters
335         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
336       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
337         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
338       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
339         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
340       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
341         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
342       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
343         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
344       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
345         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
346       &' // ======================================================='       &' // ======================================================='
347         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
348       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
349         WRITE(msgBuf,'(A)') ' // End JFNK statistics'         WRITE(msgBuf,'(A)') ' // End JFNK statistics'
350         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
351       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
352         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
353       &' // ======================================================='       &' // ======================================================='
354         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
355       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
# Line 377  C     Print more debugging information Line 366  C     Print more debugging information
366        IF ( debugLevel.GE.debLevA ) THEN        IF ( debugLevel.GE.debLevA ) THEN
367         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
368          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
369          WRITE(msgBuf,'(A,I10)')          WRITE(msgBuf,'(A,I10)')
370       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
371       &       myIter+1       &       myIter+1
372          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 386  C     Print more debugging information Line 375  C     Print more debugging information
375         ENDIF         ENDIF
376         IF ( krylovFails .GT. 0 ) THEN         IF ( krylovFails .GT. 0 ) THEN
377          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
378          WRITE(msgBuf,'(A,I4,A,I10)')          WRITE(msgBuf,'(A,I4,A,I10)')
379       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',
380       &       krylovFails, ' times in timestep ', myIter+1       &       krylovFails, ' times in timestep ', myIter+1
381          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 394  C     Print more debugging information Line 383  C     Print more debugging information
383          _END_MASTER( myThid )          _END_MASTER( myThid )
384         ENDIF         ENDIF
385         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
386         WRITE(msgBuf,'(A,I6,A,I10)')         WRITE(msgBuf,'(A,I6,A,I10)')
387       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
388       &      totalKrylovItersLoc, ' in timestep ', myIter+1       &      totalKrylovItersLoc, ' in timestep ', myIter+1
389         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 402  C     Print more debugging information Line 391  C     Print more debugging information
391         _END_MASTER( myThid )         _END_MASTER( myThid )
392        ENDIF        ENDIF
393    
394  #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */        RETURN
395          END
396    
397    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
398    CBOP
399    C     !ROUTINE: SEAICE_JFNK_UPDATE
400    C     !INTERFACE:
401    
402          SUBROUTINE SEAICE_JFNK_UPDATE(
403         I     duIce, dvIce,
404         U     uIce, vIce, JFNKresidual,
405         O     uIceRes, vIceRes,
406         I     newtonIter, myTime, myIter, myThid )
407    
408    C     !DESCRIPTION: \bv
409    C     *==========================================================*
410    C     | SUBROUTINE SEAICE_JFNK_UPDATE
411    C     | o Update velocities with incremental solutions of FGMRES
412    C     | o compute residual of updated solutions and do
413    C     | o linesearch:
414    C     |   reduce update until residual is smaller than previous
415    C     |   one (input)
416    C     *==========================================================*
417    C     | written by Martin Losch, Jan 2013
418    C     *==========================================================*
419    C     \ev
420    
421    C     !USES:
422          IMPLICIT NONE
423    
424    C     === Global variables ===
425    #include "SIZE.h"
426    #include "EEPARAMS.h"
427    #include "PARAMS.h"
428    #include "SEAICE_SIZE.h"
429    #include "SEAICE_PARAMS.h"
430    
431    C     !INPUT/OUTPUT PARAMETERS:
432    C     === Routine arguments ===
433    C     myTime :: Simulation time
434    C     myIter :: Simulation timestep number
435    C     myThid :: my Thread Id. number
436    C     newtonIter :: current iterate of Newton iteration
437          _RL     myTime
438          INTEGER myIter
439          INTEGER myThid
440          INTEGER newtonIter
441    C     JFNKresidual :: Residual at the beginning of the FGMRES iteration,
442    C                     changes with newtonIter (updated)
443          _RL     JFNKresidual
444    C     du/vIce   :: ice velocity increment to be added to u/vIce (input)
445          _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
446          _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
447    C     u/vIce    :: ice velocity increment to be added to u/vIce (updated)
448          _RL uIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
449          _RL vIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
450    C     u/vIceRes :: residual of sea-ice momentum equations (output)
451          _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
452          _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
453    
454    C     !LOCAL VARIABLES:
455    C     === Local variables ===
456    C     i,j,bi,bj :: loop indices
457          INTEGER i,j,bi,bj
458          INTEGER l
459          _RL     resLoc, facLS
460          LOGICAL doLineSearch
461    C     nVec    :: size of the input vector(s)
462    C     resTmp  :: vector version of the residuals
463          INTEGER nVec
464          PARAMETER ( nVec  = 2*sNx*sNy )
465          _RL resTmp (nVec,1,nSx,nSy)
466    
467          CHARACTER*(MAX_LEN_MBUF) msgBuf
468    CEOP
469    
470    C     Initialise some local variables
471          l = 0
472          resLoc = JFNKresidual
473          facLS = 1. _d 0
474          doLineSearch = .TRUE.
475          DO WHILE ( doLineSearch )
476    C     Create update
477           DO bj=myByLo(myThid),myByHi(myThid)
478            DO bi=myBxLo(myThid),myBxHi(myThid)
479             DO J=1-OLy,sNy+OLy
480              DO I=1-OLx,sNx+OLx
481               uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
482               vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
483              ENDDO
484             ENDDO
485            ENDDO
486           ENDDO
487    C     Compute current residual F(u), (includes re-computation of global
488    C     variables DWATN, zeta, and eta, i.e. they are different after this)
489           CALL SEAICE_CALC_RESIDUAL(
490         I      uIce, vIce,
491         O      uIceRes, vIceRes,
492         I      newtonIter, 0, myTime, myIter, myThid )
493    C     Important: Compute the norm of the residual using the same scalar
494    C     product that SEAICE_FGMRES does
495           CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
496           CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
497           resLoc = SQRT(resLoc)
498    C     Determine, if we need more iterations
499           doLineSearch = resLoc .GE. JFNKresidual
500    C     Limit the maximum number of iterations arbitrarily to four
501           doLineSearch = doLineSearch .AND. l .LT. 4
502    C     For the first iteration du/vIce = 0 and there will be no
503    C     improvement of the residual possible, so we do only the first
504    C     iteration
505           IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
506    C     Only start a linesearch after some Newton iterations
507           IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
508    C     Increment counter
509           l = l + 1
510    C     some output diagnostics
511           IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
512            _BEGIN_MASTER( myThid )
513            WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
514         &       ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
515         &       'facLS, JFNKresidual, resLoc = ',
516         &        newtonIter, l, facLS, JFNKresidual, resLoc
517            CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
518         &       SQUEEZE_RIGHT, myThid )
519            _END_MASTER( myThid )
520           ENDIF
521    C     Get ready for the next iteration: after adding du/vIce in the first
522    C     iteration, we substract 0.5*du/vIce from u/vIce in the next
523    C     iterations, 0.25*du/vIce in the second, etc.
524           facLS = - 0.5 _d 0 * ABS(facLS)
525          ENDDO
526    C     This is the new residual
527          JFNKresidual = resLoc
528    
529    #endif /* SEAICE_ALLOW_JFNK */
530    
531        RETURN        RETURN
532        END        END

Legend:
Removed from v.1.11  
changed lines
  Added in v.1.22

  ViewVC Help
Powered by ViewVC 1.1.22