/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Diff of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by mlosch, Mon Nov 26 08:04:50 2012 UTC revision 1.31 by mlosch, Thu Jun 8 15:33:50 2017 UTC
# Line 2  C $Header$ Line 2  C $Header$
2  C $Name$  C $Name$
3    
4  #include "SEAICE_OPTIONS.h"  #include "SEAICE_OPTIONS.h"
5    #ifdef ALLOW_AUTODIFF
6    # include "AUTODIFF_OPTIONS.h"
7    #endif
8    
9    C--  File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
10    C--   Contents
11    C--   o SEAICE_JFNK
12    C--   o SEAICE_JFNK_UPDATE
13    
14  CBOP  CBOP
15  C     !ROUTINE: SEAICE_JFNK  C     !ROUTINE: SEAICE_JFNK
# Line 10  C     !INTERFACE: Line 18  C     !INTERFACE:
18    
19  C     !DESCRIPTION: \bv  C     !DESCRIPTION: \bv
20  C     *==========================================================*  C     *==========================================================*
21  C     | SUBROUTINE SEAICE_JFKF  C     | SUBROUTINE SEAICE_JFNK
22  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver  C     | o Ice dynamics using a Jacobian-free Newton-Krylov solver
23  C     |   following J.-F. Lemieux et al. Improving the numerical  C     |   following J.-F. Lemieux et al. Improving the numerical
24  C     |   convergence of viscous-plastic sea ice models with the  C     |   convergence of viscous-plastic sea ice models with the
# Line 48  C     myThid :: my Thread Id. number Line 56  C     myThid :: my Thread Id. number
56        INTEGER myIter        INTEGER myIter
57        INTEGER myThid        INTEGER myThid
58    
59  #if ( (defined SEAICE_CGRID) && \  #ifdef SEAICE_ALLOW_JFNK
       (defined SEAICE_ALLOW_JFNK) && \  
       (defined SEAICE_ALLOW_DYNAMICS) )  
60  C     !FUNCTIONS:  C     !FUNCTIONS:
61        LOGICAL  DIFFERENT_MULTIPLE        LOGICAL  DIFFERENT_MULTIPLE
62        EXTERNAL DIFFERENT_MULTIPLE        EXTERNAL DIFFERENT_MULTIPLE
63    
64    C     !LOCAL VARIABLES:
65    C     === Local variables ===
66  C     i,j,bi,bj :: loop indices  C     i,j,bi,bj :: loop indices
67        INTEGER i,j,bi,bj        INTEGER i,j,bi,bj
68  C     loop indices  C     loop indices
69        INTEGER newtonIter        INTEGER newtonIter
70        INTEGER krylovIter, krylovFails        INTEGER krylovIter, krylovFails
71        INTEGER totalKrylovItersLoc        INTEGER totalKrylovItersLoc, totalNewtonItersLoc
72    C     FGMRES parameters
73    C     im      :: size of Krylov space
74    C     ifgmres :: interation counter
75          INTEGER im
76          PARAMETER ( im = 50 )
77          INTEGER ifgmres
78  C     FGMRES flag that determines amount of output messages of fgmres  C     FGMRES flag that determines amount of output messages of fgmres
79        INTEGER iOutFGMRES        INTEGER iOutFGMRES
80  C     FGMRES flag that indicates what fgmres wants us to do next  C     FGMRES flag that indicates what fgmres wants us to do next
81        INTEGER iCode        INTEGER iCode
82        _RL     JFNKresidual, JFNKresidualTile(nSx,nSy)        _RL     JFNKresidual
83        _RL     JFNKresidualKm1        _RL     JFNKresidualKm1
84  C     parameters to compute convergence criterion  C     parameters to compute convergence criterion
85        _RL     phi_e, alp_e, JFNKgamma_lin        _RL     JFNKgamma_lin
86        _RL     FGMRESeps        _RL     FGMRESeps
87        _RL     JFNKtol        _RL     JFNKtol
88  C      C     backward differences extrapolation factors
89          _RL bdfFac, bdfAlpha
90    C
91        _RL     recip_deltaT        _RL     recip_deltaT
92        LOGICAL JFNKconverged, krylovConverged        LOGICAL JFNKconverged, krylovConverged
93        LOGICAL writeNow        LOGICAL writeNow
94        CHARACTER*(MAX_LEN_MBUF) msgBuf        CHARACTER*(MAX_LEN_MBUF) msgBuf
95  C  
96  C     u/vIceRes :: residual of sea-ice momentum equations  C     u/vIceRes :: residual of sea-ice momentum equations
97        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
98        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
99    C     extra time level required for backward difference time stepping
100          _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
101          _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
102  C     du/vIce   :: ice velocity increment to be added to u/vIce  C     du/vIce   :: ice velocity increment to be added to u/vIce
103        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
104        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
105  C     precomputed (= constant per Newton iteration) versions of  C     precomputed (= constant per Newton iteration) versions of
106  C     zeta, eta, and DWATN, press  C     zeta, eta, and DWATN, press
107        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
108          _RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
109        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaPre  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
110        _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
111        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)        _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
112    C     work arrays
113          _RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy)
114          _RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy)
115          _RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy)
116  CEOP  CEOP
117    
118  C     Initialise  C     Initialise
# Line 103  C     Initialise Line 127  C     Initialise
127        recip_deltaT        = 1. _d 0 / SEAICE_deltaTdyn        recip_deltaT        = 1. _d 0 / SEAICE_deltaTdyn
128    
129        iOutFGMRES=0        iOutFGMRES=0
130  C     iOutFgmres=1 gives a little bit of output  C     with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
131        IF ( debugLevel.GE.debLevA .AND.        IF ( debugLevel.GE.debLevC .AND.
132       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )       &     DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
133       &     iOutFGMRES=1       &     iOutFGMRES=1
134    
135  C      C     backward difference extrapolation factors
136          bdfFac = 0. _d 0
137          IF ( SEAICEuseBDF2 ) THEN
138           IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN
139            bdfFac = 0. _d 0
140           ELSE
141            bdfFac = 0.5 _d 0
142           ENDIF
143          ENDIF
144          bdfAlpha = 1. _d 0 + bdfFac
145    
146        DO bj=myByLo(myThid),myByHi(myThid)        DO bj=myByLo(myThid),myByHi(myThid)
147         DO bi=myBxLo(myThid),myBxHi(myThid)         DO bi=myBxLo(myThid),myBxHi(myThid)
148          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
149           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
150            uIceRes(I,J,bi,bj) = 0. _d 0            uIceRes(I,J,bi,bj) = 0. _d 0
151            vIceRes(I,J,bi,bj) = 0. _d 0            vIceRes(I,J,bi,bj) = 0. _d 0
152            duIce  (I,J,bi,bj) = 0. _d 0            duIce  (I,J,bi,bj) = 0. _d 0
153            dvIce  (I,J,bi,bj) = 0. _d 0            dvIce  (I,J,bi,bj) = 0. _d 0
154             ENDDO
155            ENDDO
156    C     cycle ice velocities
157            DO J=1-OLy,sNy+OLy
158             DO I=1-OLx,sNx+OLx
159              duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha
160         &         + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac
161              dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha
162         &         + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac
163            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)            uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
164            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)            vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
165           ENDDO           ENDDO
166          ENDDO          ENDDO
167    C     As long as IMEX is not properly implemented leave this commented out
168    CML        IF ( .NOT.SEAICEuseIMEX ) THEN
169  C     Compute things that do no change during the Newton iteration:  C     Compute things that do no change during the Newton iteration:
170  C     sea-surface tilt and wind stress:  C     sea-surface tilt and wind stress:
171  C     FORCEX/Y0 - mass*(u/vIceNm1)/deltaT  C     FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT
172          DO J=1-Oly,sNy+Oly          DO J=1-OLy,sNy+OLy
173           DO I=1-Olx,sNx+Olx           DO I=1-OLx,sNx+OLx
174            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)            FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
175       &         + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT
176            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)            FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
177       &         + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT           &         + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT
178           ENDDO           ENDDO
179          ENDDO          ENDDO
180    CML        ENDIF
181         ENDDO         ENDDO
182        ENDDO        ENDDO
183  C     Start nonlinear Newton iteration: outer loop iteration  C     Start nonlinear Newton iteration: outer loop iteration
184        DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.        DO WHILE ( newtonIter.LT.SEAICEnonLinIterMax .AND.
185       &     .NOT.JFNKconverged )       &     .NOT.JFNKconverged )
186         newtonIter = newtonIter + 1         newtonIter = newtonIter + 1
187  C     Compute initial residual F(u), (includes computation of global  C     Compute initial residual F(u), (includes computation of global
188  C     variables DWATN, zeta, and eta)  C     variables DWATN, zeta, and eta)
189         CALL SEAICE_CALC_RESIDUAL(         IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
190       I      uIce, vIce,       I      duIce, dvIce,
191       O      uIceRes, vIceRes,       U      uIce, vIce, JFNKresidual,
192       I      newtonIter, 0, myTime, myIter, myThid )       O      uIceRes, vIceRes,
193         CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)       I      newtonIter, myTime, myIter, myThid )
194  C     local copies of precomputed coefficients that are to stay  C     local copies of precomputed coefficients that are to stay
195  C     constant for the preconditioner  C     constant for the preconditioner
196         DO bj=myByLo(myThid),myByHi(myThid)         DO bj=myByLo(myThid),myByHi(myThid)
197          DO bi=myBxLo(myThid),myBxHi(myThid)          DO bi=myBxLo(myThid),myBxHi(myThid)
198           DO j=1-Oly,sNy+Oly           DO j=1-OLy,sNy+OLy
199            DO i=1-Olx,sNx+Olx            DO i=1-OLx,sNx+OLx
200             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)             zetaPre(I,J,bi,bj) =  zeta(I,J,bi,bj)
201               zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj)
202              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)              etaPre(I,J,bi,bj) =   eta(I,J,bi,bj)
203             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)             etaZPre(I,J,bi,bj) =  etaZ(I,J,bi,bj)
204             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)             dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
# Line 159  C     constant for the preconditioner Line 206  C     constant for the preconditioner
206           ENDDO           ENDDO
207          ENDDO          ENDDO
208         ENDDO         ENDDO
 C      
        DO bj=myByLo(myThid),myByHi(myThid)  
         DO bi=myBxLo(myThid),myBxHi(myThid)  
          JFNKresidualTile(bi,bj) = 0. _d 0  
          DO J=1,sNy  
           DO I=1,sNx  
 #ifdef CG2D_SINGLECPU_SUM  
            JFNKlocalBuf(I,J,bi,bj) =  
 #else  
            JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +  
 #endif  
      &          uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +  
      &          vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)  
           ENDDO  
          ENDDO  
         ENDDO  
        ENDDO  
        JFNKresidual = 0. _d 0  
 #ifdef CG2D_SINGLECPU_SUM  
        CALL GLOBAL_SUM_SINGLECPU_RL(  
      &         JFNKlocalBuf,JFNKresidual, 0, 0, myThid)  
 #else  
        CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )  
 #endif  
        JFNKresidual = SQRT(JFNKresidual)  
209  C     compute convergence criterion for linear preconditioned FGMRES  C     compute convergence criterion for linear preconditioned FGMRES
210         JFNKgamma_lin = JFNKgamma_lin_max         JFNKgamma_lin = JFNKgamma_lin_max
211         IF ( newtonIter.GT.1.AND.newtonIter.LE.100         IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
212       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN       &      .AND.JFNKresidual.LT.JFNKres_t ) THEN
213  C     Eisenstat, 1996, equ.(2.6)        C     Eisenstat and Walker (1996), eq.(2.6)
214          phi_e = 1. _d 0          JFNKgamma_lin = SEAICE_JFNKphi
215          alp_e = 1. _d 0       &       *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
         JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e  
216          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)          JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
217          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)          JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
218         ENDIF         ENDIF
219  C     save the residual for the next iteration  C     save the residual for the next iteration
220         JFNKresidualKm1 = JFNKresidual         JFNKresidualKm1 = JFNKresidual
221  C  
222  C     The Krylov iteration using FGMRES, the preconditioner is LSOR  C     The Krylov iteration using FGMRES, the preconditioner is LSOR
223  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped  C     for now. The code is adapted from SEAICE_LSR, but heavily stripped
224  C     down.  C     down.
# Line 205  C     krylovIter is mapped into "its" in Line 226  C     krylovIter is mapped into "its" in
226  C     in that routine  C     in that routine
227         krylovIter    = 0         krylovIter    = 0
228         iCode         = 0         iCode         = 0
229         IF ( debugLevel.GE.debLevA ) THEN    
         _BEGIN_MASTER( myThid )  
         WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')  
      &       ' S/R SEAICE_JFNK: newtonIter,',  
      &       ' total newtonIter, JFNKgamma_lin, initial norm = ',  
      &       newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,  
      &       JFNKgamma_lin, JFNKresidual  
         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,  
      &       SQUEEZE_RIGHT, myThid )  
         _END_MASTER( myThid )  
        ENDIF  
 C  
230         JFNKconverged = JFNKresidual.LT.JFNKtol         JFNKconverged = JFNKresidual.LT.JFNKtol
231  C       &      .OR.JFNKresidual.EQ.0. _d 0
232    
233  C     do Krylov loop only if convergence is not reached  C     do Krylov loop only if convergence is not reached
234  C  
235         IF ( .NOT.JFNKconverged ) THEN         IF ( .NOT.JFNKconverged ) THEN
236  C  
237  C     start Krylov iteration (FGMRES)  C     start Krylov iteration (FGMRES)
238  C  
239          krylovConverged = .FALSE.          krylovConverged = .FALSE.
240          FGMRESeps = JFNKgamma_lin * JFNKresidual          FGMRESeps = JFNKgamma_lin * JFNKresidual
241          DO WHILE ( .NOT.krylovConverged )  C     map first guess sol; it is zero because the solution is a correction
242           CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid)
243    C     map rhs and change its sign because we are solving J*u = -F
244            CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid)
245            DO bj=myByLo(myThid),myByHi(myThid)
246             DO bi=myBxLo(myThid),myBxHi(myThid)
247              DO j=1,nVec
248               rhs(j,bi,bj) = - rhs(j,bi,bj)
249              ENDDO
250             ENDDO
251            ENDDO
252            DO WHILE ( .NOT.krylovConverged )
253  C     solution vector sol = du/vIce  C     solution vector sol = du/vIce
254  C     residual vector (rhs) Fu = u/vIceRes  C     residual vector (rhs) Fu = u/vIceRes
255  C     output work vectors wk1, -> input work vector wk2  C     output work vectors wk1, -> input work vector wk2
256    
257    C     map preconditioner results or Jacobian times vector,
258    C     stored in du/vIce to wk2, for iCode=0, wk2 is set to zero,
259    C     because du/vIce = 0
260             CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid)
261    C
262             CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter,
263         U        vv,w,wk1,wk2,
264         I        FGMRESeps,SEAICElinearIterMax,iOutFGMRES,
265         U        iCode,
266         I        myThid)
267  C      C    
268           CALL SEAICE_FGMRES_DRIVER(           IF ( iCode .EQ. 0 ) THEN
269       I        uIceRes, vIceRes,  C     map sol(ution) vector to du/vIce
270       U        duIce, dvIce, iCode,            CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid)
271       I        FGMRESeps, iOutFGMRES,           ELSE
272       I        newtonIter, krylovIter, myTime, myIter, myThid )  C     map work vector to du/vIce to either compute a preconditioner
273    C     solution (wk1=rhs) or a Jacobian times wk1
274              CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid)
275             ENDIF
276    C     Fill overlaps in updated fields
277             CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid)
278  C     FGMRES returns iCode either asking for an new preconditioned vector  C     FGMRES returns iCode either asking for an new preconditioned vector
279  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate  C     or product of matrix (Jacobian) times vector. For iCode = 0, terminate
280  C     iteration  C     iteration
281           IF (iCode.EQ.1) THEN           IF (iCode.EQ.1) THEN
282  C     Call preconditioner  C     Call preconditioner
283            IF ( SOLV_MAX_ITERS .GT. 0 )            IF ( SEAICEpreconLinIter .GT. 0 )
284       &         CALL SEAICE_PRECONDITIONER(       &         CALL SEAICE_PRECONDITIONER(
285       U         duIce, dvIce,       U         duIce, dvIce,
286       I         zetaPre, etaPre, etaZpre, dwatPre,       I         zetaPre, etaPre, etaZpre, zetaZpre, dwatPre,
287       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
288           ELSEIF (iCode.GE.2) THEN           ELSEIF (iCode.GE.2) THEN
289  C     Compute Jacobian times vector  C     Compute Jacobian times vector
290            CALL SEAICE_JACVEC(            CALL SEAICE_JACVEC(
291       I         uIce, vIce, uIceRes, vIceRes,       I         uIce, vIce, uIceRes, vIceRes,
292       U         duIce, dvIce,         U         duIce, dvIce,
293       I         newtonIter, krylovIter, myTime, myIter, myThid )       I         newtonIter, krylovIter, myTime, myIter, myThid )
294           ENDIF           ENDIF
295           krylovConverged = iCode.EQ.0           krylovConverged = iCode.EQ.0
# Line 261  C     End of Krylov iterate Line 299  C     End of Krylov iterate
299  C     some output diagnostics  C     some output diagnostics
300          IF ( debugLevel.GE.debLevA ) THEN          IF ( debugLevel.GE.debLevA ) THEN
301           _BEGIN_MASTER( myThid )           _BEGIN_MASTER( myThid )
302             totalNewtonItersLoc =
303         &        SEAICEnonLinIterMax*(myIter-nIter0)+newtonIter
304             WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
305         &        ' S/R SEAICE_JFNK: Newton iterate / total, ',
306         &        'JFNKgamma_lin, initial norm = ',
307         &        newtonIter, totalNewtonItersLoc,
308         &        JFNKgamma_lin,JFNKresidual
309             CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
310         &        SQUEEZE_RIGHT, myThid )
311           WRITE(msgBuf,'(3(A,I6))')           WRITE(msgBuf,'(3(A,I6))')
312       &        ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,       &        ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
313       &        ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,       &        ' / ', totalNewtonItersLoc,
314       &        ', Nb. of FGMRES iterations = ', krylovIter       &        ', Nb. of FGMRES iterations = ', krylovIter
315           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,           CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
316       &        SQUEEZE_RIGHT, myThid )       &        SQUEEZE_RIGHT, myThid )
317           _END_MASTER( myThid )           _END_MASTER( myThid )
318          ENDIF          ENDIF
319          IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN          IF ( krylovIter.EQ.SEAICElinearIterMax ) THEN
320           krylovFails = krylovFails + 1           krylovFails = krylovFails + 1
321          ENDIF          ENDIF
322    C     Set the stopping criterion for the Newton iteration and the
323    C     criterion for the transition from accurate to approximate FGMRES
324            IF ( newtonIter .EQ. 1 ) THEN
325             JFNKtol=SEAICEnonLinTol*JFNKresidual
326             IF ( JFNKres_tFac .NE. UNSET_RL )
327         &        JFNKres_t = JFNKresidual * JFNKres_tFac
328            ENDIF
329  C     Update linear solution vector and return to Newton iteration  C     Update linear solution vector and return to Newton iteration
330    C     Do a linesearch if necessary, and compute a new residual.
331    C     Note that it should be possible to do the following operations
332    C     at the beginning of the Newton iteration, thereby saving us from
333    C     the extra call of seaice_jfnk_update, but unfortunately that
334    C     changes the results, so we leave the stuff here for now.
335            CALL SEAICE_JFNK_UPDATE(
336         I       duIce, dvIce,
337         U       uIce, vIce, JFNKresidual,
338         O       uIceRes, vIceRes,
339         I       newtonIter, myTime, myIter, myThid )
340    C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
341          DO bj=myByLo(myThid),myByHi(myThid)          DO bj=myByLo(myThid),myByHi(myThid)
342           DO bi=myBxLo(myThid),myBxHi(myThid)           DO bi=myBxLo(myThid),myBxHi(myThid)
343            DO J=1-Oly,sNy+Oly            DO J=1-OLy,sNy+OLy
344             DO I=1-Olx,sNx+Olx             DO I=1-OLx,sNx+OLx
             uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)  
             vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)  
 C     reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver  
345              duIce(I,J,bi,bj)= 0. _d 0              duIce(I,J,bi,bj)= 0. _d 0
346              dvIce(I,J,bi,bj)= 0. _d 0              dvIce(I,J,bi,bj)= 0. _d 0
347             ENDDO             ENDDO
348            ENDDO            ENDDO
349           ENDDO           ENDDO
350          ENDDO          ENDDO
 C     Set the stopping criterion for the Newton iteration  
         IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual  
351         ENDIF         ENDIF
352  C     end of Newton iterate  C     end of Newton iterate
353        ENDDO        ENDDO
354  C  
355  C--   Output diagnostics  C--   Output diagnostics
356  C  
357        IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN        IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
358  C     Count iterations  C     Count iterations
359         totalJFNKtimeSteps = totalJFNKtimeSteps + 1         totalJFNKtimeSteps = totalJFNKtimeSteps + 1
# Line 301  C     Count iterations Line 361  C     Count iterations
361         totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc         totalKrylovIters   = totalKrylovIters + totalKrylovItersLoc
362  C     Record failure  C     Record failure
363         totalKrylovFails   = totalKrylovFails + krylovFails         totalKrylovFails   = totalKrylovFails + krylovFails
364         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
365          totalNewtonFails = totalNewtonFails + 1          totalNewtonFails = totalNewtonFails + 1
366         ENDIF         ENDIF
367        ENDIF        ENDIF
368  C     Decide whether it is time to dump and reset the counter  C     Decide whether it is time to dump and reset the counter
369        writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,        writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
370       &     myTime+deltaTClock, deltaTClock)       &     myTime+deltaTClock, deltaTClock)
371  #ifdef ALLOW_CAL  #ifdef ALLOW_CAL
372        IF ( useCAL ) THEN        IF ( useCAL ) THEN
373         CALL CAL_TIME2DUMP(         CALL CAL_TIME2DUMP(
374       I      zeroRL, SEAICE_monFreq,  deltaTClock,       I      zeroRL, SEAICE_monFreq,  deltaTClock,
375       U      writeNow,       U      writeNow,
376       I      myTime+deltaTclock, myIter+1, myThid )       I      myTime+deltaTclock, myIter+1, myThid )
# Line 318  C     Decide whether it is time to dump Line 378  C     Decide whether it is time to dump
378  #endif  #endif
379        IF ( writeNow ) THEN        IF ( writeNow ) THEN
380         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
381         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
382       &' // ======================================================='       &' // ======================================================='
383         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
384       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
385         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
386         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
387       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
388         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
389       &' // ======================================================='       &' // ======================================================='
390         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
391       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
392         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
393       &      ' %JFNK_MON: time step              = ', myIter+1       &      ' %JFNK_MON: time step              = ', myIter+1
394         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
395       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
396         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
397       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps       &      ' %JFNK_MON: Nb. of time steps      = ', totalJFNKtimeSteps
398         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
399       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
400         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
401       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters       &      ' %JFNK_MON: Nb. of Newton steps    = ', totalNewtonIters
402         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
403       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
404         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
405       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters       &      ' %JFNK_MON: Nb. of Krylov steps    = ', totalKrylovIters
406         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
407       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
408         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
409       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails       &      ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
410         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
411       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
412         WRITE(msgBuf,'(A,I10)')         WRITE(msgBuf,'(A,I10)')
413       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails       &      ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
414         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
415       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
416         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
417       &' // ======================================================='       &' // ======================================================='
418         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
419       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
420         WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'         WRITE(msgBuf,'(A)') ' // End JFNK statistics'
421         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
422       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
423         WRITE(msgBuf,'(A)')         WRITE(msgBuf,'(A)')
424       &' // ======================================================='       &' // ======================================================='
425         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
426       &      SQUEEZE_RIGHT, myThid )       &      SQUEEZE_RIGHT, myThid )
# Line 375  C     reset and start again Line 435  C     reset and start again
435    
436  C     Print more debugging information  C     Print more debugging information
437        IF ( debugLevel.GE.debLevA ) THEN        IF ( debugLevel.GE.debLevA ) THEN
438         IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN         IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
439          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
440          WRITE(msgBuf,'(A,I10)')          WRITE(msgBuf,'(A,I10)')
441       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',       &       ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
442       &       myIter+1       &       myIter+1
443          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 386  C     Print more debugging information Line 446  C     Print more debugging information
446         ENDIF         ENDIF
447         IF ( krylovFails .GT. 0 ) THEN         IF ( krylovFails .GT. 0 ) THEN
448          _BEGIN_MASTER( myThid )          _BEGIN_MASTER( myThid )
449          WRITE(msgBuf,'(A,I4,A,I10)')          WRITE(msgBuf,'(A,I4,A,I10)')
450       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',       &       ' S/R SEAICE_JFNK: FGMRES did not converge ',
451       &       krylovFails, ' times in timestep ', myIter+1       &       krylovFails, ' times in timestep ', myIter+1
452          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,          CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 394  C     Print more debugging information Line 454  C     Print more debugging information
454          _END_MASTER( myThid )          _END_MASTER( myThid )
455         ENDIF         ENDIF
456         _BEGIN_MASTER( myThid )         _BEGIN_MASTER( myThid )
457         WRITE(msgBuf,'(A,I6,A,I10)')         WRITE(msgBuf,'(A,I6,A,I10)')
458       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',       &      ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
459       &      totalKrylovItersLoc, ' in timestep ', myIter+1       &      totalKrylovItersLoc, ' in timestep ', myIter+1
460         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,         CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
# Line 402  C     Print more debugging information Line 462  C     Print more debugging information
462         _END_MASTER( myThid )         _END_MASTER( myThid )
463        ENDIF        ENDIF
464    
465  #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */        RETURN
466          END
467    
468    C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
469    CBOP
470    C     !ROUTINE: SEAICE_JFNK_UPDATE
471    C     !INTERFACE:
472    
473          SUBROUTINE SEAICE_JFNK_UPDATE(
474         I     duIce, dvIce,
475         U     uIce, vIce, JFNKresidual,
476         O     uIceRes, vIceRes,
477         I     newtonIter, myTime, myIter, myThid )
478    
479    C     !DESCRIPTION: \bv
480    C     *==========================================================*
481    C     | SUBROUTINE SEAICE_JFNK_UPDATE
482    C     | o Update velocities with incremental solutions of FGMRES
483    C     | o compute residual of updated solutions and do
484    C     | o linesearch:
485    C     |   reduce update until residual is smaller than previous
486    C     |   one (input)
487    C     *==========================================================*
488    C     | written by Martin Losch, Jan 2013
489    C     *==========================================================*
490    C     \ev
491    
492    C     !USES:
493          IMPLICIT NONE
494    
495    C     === Global variables ===
496    #include "SIZE.h"
497    #include "EEPARAMS.h"
498    #include "PARAMS.h"
499    #include "SEAICE_SIZE.h"
500    #include "SEAICE_PARAMS.h"
501    
502    C     !INPUT/OUTPUT PARAMETERS:
503    C     === Routine arguments ===
504    C     myTime :: Simulation time
505    C     myIter :: Simulation timestep number
506    C     myThid :: my Thread Id. number
507    C     newtonIter :: current iterate of Newton iteration
508          _RL     myTime
509          INTEGER myIter
510          INTEGER myThid
511          INTEGER newtonIter
512    C     JFNKresidual :: Residual at the beginning of the FGMRES iteration,
513    C                     changes with newtonIter (updated)
514          _RL     JFNKresidual
515    C     du/vIce   :: ice velocity increment to be added to u/vIce (input)
516          _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
517          _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
518    C     u/vIce    :: ice velocity increment to be added to u/vIce (updated)
519          _RL uIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
520          _RL vIce   (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
521    C     u/vIceRes :: residual of sea-ice momentum equations (output)
522          _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
523          _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
524    
525    C     !LOCAL VARIABLES:
526    C     === Local variables ===
527    C     i,j,bi,bj :: loop indices
528          INTEGER i,j,bi,bj
529          INTEGER l
530          _RL     resLoc, facLS
531          LOGICAL doLineSearch
532    C     nVec    :: size of the input vector(s)
533    C     resTmp  :: vector version of the residuals
534          INTEGER nVec
535          PARAMETER ( nVec  = 2*sNx*sNy )
536          _RL resTmp (nVec,1,nSx,nSy)
537    
538          CHARACTER*(MAX_LEN_MBUF) msgBuf
539    CEOP
540    
541    C     Initialise some local variables
542          l = 0
543          resLoc = JFNKresidual
544          facLS = 1. _d 0
545          doLineSearch = .TRUE.
546          DO WHILE ( doLineSearch )
547    C     Create update
548           DO bj=myByLo(myThid),myByHi(myThid)
549            DO bi=myBxLo(myThid),myBxHi(myThid)
550             DO J=1-OLy,sNy+OLy
551              DO I=1-OLx,sNx+OLx
552               uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
553               vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
554              ENDDO
555             ENDDO
556            ENDDO
557           ENDDO
558    C     Compute current residual F(u), (includes re-computation of global
559    C     variables DWATN, zeta, and eta, i.e. they are different after this)
560           CALL SEAICE_CALC_RESIDUAL(
561         I      uIce, vIce,
562         O      uIceRes, vIceRes,
563         I      newtonIter, 0, myTime, myIter, myThid )
564    C     Important: Compute the norm of the residual using the same scalar
565    C     product that SEAICE_FGMRES does
566           CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
567           CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
568           resLoc = SQRT(resLoc)
569    C     Determine, if we need more iterations
570           doLineSearch = resLoc .GE. JFNKresidual
571    C     Limit the maximum number of iterations arbitrarily to four
572           doLineSearch = doLineSearch .AND. l .LT. 4
573    C     For the first iteration du/vIce = 0 and there will be no
574    C     improvement of the residual possible, so we do only the first
575    C     iteration
576           IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
577    C     Only start a linesearch after some Newton iterations
578           IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
579    C     Increment counter
580           l = l + 1
581    C     some output diagnostics
582           IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
583            _BEGIN_MASTER( myThid )
584            WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
585         &       ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
586         &       'facLS, JFNKresidual, resLoc = ',
587         &        newtonIter, l, facLS, JFNKresidual, resLoc
588            CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
589         &       SQUEEZE_RIGHT, myThid )
590            _END_MASTER( myThid )
591           ENDIF
592    C     Get ready for the next iteration: after adding du/vIce in the first
593    C     iteration, we substract 0.5*du/vIce from u/vIce in the next
594    C     iterations, 0.25*du/vIce in the second, etc.
595           facLS = - 0.5 _d 0 * ABS(facLS)
596          ENDDO
597    C     This is the new residual
598          JFNKresidual = resLoc
599    
600    #endif /* SEAICE_ALLOW_JFNK */
601    
602        RETURN        RETURN
603        END        END

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.31

  ViewVC Help
Powered by ViewVC 1.1.22