/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.30 - (hide annotations) (download)
Thu Jan 28 12:54:12 2016 UTC (9 years, 5 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint66g, checkpoint66f, checkpoint66e, checkpoint66d, checkpoint66c, checkpoint66b, checkpoint66a, checkpoint66h, checkpoint65z, checkpoint65x, checkpoint65y, checkpoint65v, checkpoint65w, checkpoint65t, checkpoint65u
Changes since 1.29: +19 -12 lines
unify iteration parameters for implicit solvers (JFNK and Picard)
    SEAICEnonLinIterMax replaces SEAICEnewtonIterMax/NPSEUDOTIMESTEPS
    SEAICElinearIterMax replaces SEAICEkrylovIterMax/SOLV_MAX_ITER
    SEAICEpreLinIterMax replaces SOLV_MAX_ITER in preconditioner
    SEAICEpreNL_IterMax replaces NPSEUDOTIMESTEPS in preconditioner
    SEAICEnonLinTol     replaces JFNKgamma_nonlin
old parameters are retired (setting them will lead to a STOP)

1 mlosch 1.30 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.29 2016/01/27 14:03:34 mlosch Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5 gforget 1.27 #ifdef ALLOW_AUTODIFF
6     # include "AUTODIFF_OPTIONS.h"
7     #endif
8 mlosch 1.1
9 mlosch 1.15 C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
10     C-- Contents
11     C-- o SEAICE_JFNK
12     C-- o SEAICE_JFNK_UPDATE
13    
14 mlosch 1.1 CBOP
15     C !ROUTINE: SEAICE_JFNK
16     C !INTERFACE:
17     SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
18    
19     C !DESCRIPTION: \bv
20     C *==========================================================*
21 mlosch 1.15 C | SUBROUTINE SEAICE_JFNK
22 mlosch 1.1 C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
23     C | following J.-F. Lemieux et al. Improving the numerical
24     C | convergence of viscous-plastic sea ice models with the
25     C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
26     C | 2840-2852 (2010).
27     C | o The logic follows JFs code.
28     C *==========================================================*
29     C | written by Martin Losch, Oct 2012
30     C *==========================================================*
31     C \ev
32    
33     C !USES:
34     IMPLICIT NONE
35    
36     C === Global variables ===
37     #include "SIZE.h"
38     #include "EEPARAMS.h"
39     #include "PARAMS.h"
40     #include "DYNVARS.h"
41     #include "GRID.h"
42     #include "SEAICE_SIZE.h"
43     #include "SEAICE_PARAMS.h"
44     #include "SEAICE.h"
45    
46     #ifdef ALLOW_AUTODIFF_TAMC
47     # include "tamc.h"
48     #endif
49    
50     C !INPUT/OUTPUT PARAMETERS:
51     C === Routine arguments ===
52     C myTime :: Simulation time
53     C myIter :: Simulation timestep number
54     C myThid :: my Thread Id. number
55     _RL myTime
56     INTEGER myIter
57     INTEGER myThid
58    
59 mlosch 1.21 #ifdef SEAICE_ALLOW_JFNK
60 mlosch 1.5 C !FUNCTIONS:
61     LOGICAL DIFFERENT_MULTIPLE
62     EXTERNAL DIFFERENT_MULTIPLE
63 mlosch 1.1
64 mlosch 1.16 C !LOCAL VARIABLES:
65     C === Local variables ===
66 mlosch 1.30 C i,j,bi,bj :: loop indices
67     INTEGER i,j,bi,bj
68 mlosch 1.1 C loop indices
69 mlosch 1.5 INTEGER newtonIter
70     INTEGER krylovIter, krylovFails
71 mlosch 1.13 INTEGER totalKrylovItersLoc, totalNewtonItersLoc
72 mlosch 1.29 C FGMRES parameters
73     C im :: size of Krylov space
74     C ifgmres :: interation counter
75     INTEGER im
76     PARAMETER ( im = 50 )
77     INTEGER ifgmres
78 mlosch 1.5 C FGMRES flag that determines amount of output messages of fgmres
79     INTEGER iOutFGMRES
80     C FGMRES flag that indicates what fgmres wants us to do next
81 mlosch 1.1 INTEGER iCode
82 mlosch 1.13 _RL JFNKresidual
83 mlosch 1.1 _RL JFNKresidualKm1
84     C parameters to compute convergence criterion
85 mlosch 1.22 _RL JFNKgamma_lin
86 mlosch 1.1 _RL FGMRESeps
87     _RL JFNKtol
88 mlosch 1.24 C backward differences extrapolation factors
89     _RL bdfFac, bdfAlpha
90 mlosch 1.23 C
91 mlosch 1.1 _RL recip_deltaT
92     LOGICAL JFNKconverged, krylovConverged
93 mlosch 1.9 LOGICAL writeNow
94 mlosch 1.1 CHARACTER*(MAX_LEN_MBUF) msgBuf
95 jmc 1.20
96 mlosch 1.1 C u/vIceRes :: residual of sea-ice momentum equations
97     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
98     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
99 mlosch 1.24 C extra time level required for backward difference time stepping
100 mlosch 1.23 _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
101     _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
102 mlosch 1.1 C du/vIce :: ice velocity increment to be added to u/vIce
103     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
104     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
105 jmc 1.20 C precomputed (= constant per Newton iteration) versions of
106 mlosch 1.2 C zeta, eta, and DWATN, press
107     _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
108 mlosch 1.28 _RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
109 mlosch 1.2 _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
110 mlosch 1.8 _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
111 mlosch 1.2 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
112 mlosch 1.29 C work arrays
113     _RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy)
114     _RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy)
115     _RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy)
116 mlosch 1.1 CEOP
117    
118     C Initialise
119 mlosch 1.5 newtonIter = 0
120     krylovFails = 0
121     totalKrylovItersLoc = 0
122     JFNKconverged = .FALSE.
123     JFNKtol = 0. _d 0
124     JFNKresidual = 0. _d 0
125     JFNKresidualKm1 = 0. _d 0
126     FGMRESeps = 0. _d 0
127     recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
128    
129     iOutFGMRES=0
130 mlosch 1.12 C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
131     IF ( debugLevel.GE.debLevC .AND.
132 mlosch 1.5 & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
133     & iOutFGMRES=1
134    
135 mlosch 1.24 C backward difference extrapolation factors
136     bdfFac = 0. _d 0
137     IF ( SEAICEuseBDF2 ) THEN
138     IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN
139     bdfFac = 0. _d 0
140 mlosch 1.23 ELSE
141 mlosch 1.24 bdfFac = 0.5 _d 0
142 mlosch 1.23 ENDIF
143     ENDIF
144 mlosch 1.24 bdfAlpha = 1. _d 0 + bdfFac
145 mlosch 1.23
146 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
147     DO bi=myBxLo(myThid),myBxHi(myThid)
148 jmc 1.20 DO J=1-OLy,sNy+OLy
149     DO I=1-OLx,sNx+OLx
150 mlosch 1.1 uIceRes(I,J,bi,bj) = 0. _d 0
151     vIceRes(I,J,bi,bj) = 0. _d 0
152     duIce (I,J,bi,bj) = 0. _d 0
153     dvIce (I,J,bi,bj) = 0. _d 0
154 mlosch 1.23 ENDDO
155     ENDDO
156     C cycle ice velocities
157     DO J=1-OLy,sNy+OLy
158     DO I=1-OLx,sNx+OLx
159 mlosch 1.24 duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha
160     & + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac
161     dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha
162     & + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac
163 mlosch 1.1 uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
164     vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
165     ENDDO
166     ENDDO
167 mlosch 1.26 C As long as IMEX is not properly implemented leave this commented out
168     CML IF ( .NOT.SEAICEuseIMEX ) THEN
169 mlosch 1.1 C Compute things that do no change during the Newton iteration:
170 jmc 1.20 C sea-surface tilt and wind stress:
171 mlosch 1.25 C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT
172 jmc 1.20 DO J=1-OLy,sNy+OLy
173     DO I=1-OLx,sNx+OLx
174 mlosch 1.1 FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
175 mlosch 1.23 & + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT
176 mlosch 1.1 FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
177 mlosch 1.23 & + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT
178 mlosch 1.1 ENDDO
179     ENDDO
180 mlosch 1.26 CML ENDIF
181 mlosch 1.1 ENDDO
182     ENDDO
183     C Start nonlinear Newton iteration: outer loop iteration
184 mlosch 1.30 DO WHILE ( newtonIter.LT.SEAICEnonLinIterMax .AND.
185 mlosch 1.1 & .NOT.JFNKconverged )
186     newtonIter = newtonIter + 1
187     C Compute initial residual F(u), (includes computation of global
188     C variables DWATN, zeta, and eta)
189 jmc 1.20 IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
190     I duIce, dvIce,
191 mlosch 1.15 U uIce, vIce, JFNKresidual,
192     O uIceRes, vIceRes,
193     I newtonIter, myTime, myIter, myThid )
194 mlosch 1.1 C local copies of precomputed coefficients that are to stay
195     C constant for the preconditioner
196     DO bj=myByLo(myThid),myByHi(myThid)
197     DO bi=myBxLo(myThid),myBxHi(myThid)
198 jmc 1.20 DO j=1-OLy,sNy+OLy
199     DO i=1-OLx,sNx+OLx
200 mlosch 1.10 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
201 mlosch 1.28 zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj)
202 mlosch 1.10 etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
203     etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj)
204     dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
205 mlosch 1.1 ENDDO
206     ENDDO
207     ENDDO
208     ENDDO
209     C compute convergence criterion for linear preconditioned FGMRES
210     JFNKgamma_lin = JFNKgamma_lin_max
211 mlosch 1.18 IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
212 mlosch 1.1 & .AND.JFNKresidual.LT.JFNKres_t ) THEN
213 mlosch 1.22 C Eisenstat and Walker (1996), eq.(2.6)
214     JFNKgamma_lin = SEAICE_JFNKphi
215     & *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
216 mlosch 1.1 JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
217     JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
218     ENDIF
219     C save the residual for the next iteration
220     JFNKresidualKm1 = JFNKresidual
221 jmc 1.20
222 mlosch 1.1 C The Krylov iteration using FGMRES, the preconditioner is LSOR
223     C for now. The code is adapted from SEAICE_LSR, but heavily stripped
224     C down.
225     C krylovIter is mapped into "its" in seaice_fgmres and is incremented
226     C in that routine
227     krylovIter = 0
228     iCode = 0
229 jmc 1.20
230 mlosch 1.1 JFNKconverged = JFNKresidual.LT.JFNKtol
231 jmc 1.20
232 mlosch 1.1 C do Krylov loop only if convergence is not reached
233 jmc 1.20
234 mlosch 1.1 IF ( .NOT.JFNKconverged ) THEN
235 jmc 1.20
236 mlosch 1.1 C start Krylov iteration (FGMRES)
237 jmc 1.20
238 mlosch 1.1 krylovConverged = .FALSE.
239     FGMRESeps = JFNKgamma_lin * JFNKresidual
240 mlosch 1.29 C map first guess sol; it is zero because the solution is a correction
241     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid)
242     C map rhs and change its sign because we are solving J*u = -F
243 mlosch 1.30 CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid)
244     DO bj=myByLo(myThid),myByHi(myThid)
245     DO bi=myBxLo(myThid),myBxHi(myThid)
246     DO j=1,nVec
247     rhs(j,bi,bj) = - rhs(j,bi,bj)
248     ENDDO
249     ENDDO
250     ENDDO
251 jmc 1.20 DO WHILE ( .NOT.krylovConverged )
252 mlosch 1.1 C solution vector sol = du/vIce
253     C residual vector (rhs) Fu = u/vIceRes
254 jmc 1.20 C output work vectors wk1, -> input work vector wk2
255    
256 mlosch 1.29 C map preconditioner results or Jacobian times vector,
257     C stored in du/vIce to wk2, for iCode=0, wk2 is set to zero,
258     C because du/vIce = 0
259     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid)
260     C
261     CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter,
262     U vv,w,wk1,wk2,
263 mlosch 1.30 I FGMRESeps,SEAICElinearIterMax,iOutFGMRES,
264 mlosch 1.29 U iCode,
265     I myThid)
266     C
267     IF ( iCode .EQ. 0 ) THEN
268     C map sol(ution) vector to du/vIce
269     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid)
270     ELSE
271     C map work vector to du/vIce to either compute a preconditioner
272     C solution (wk1=rhs) or a Jacobian times wk1
273     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid)
274     ENDIF
275     C Fill overlaps in updated fields
276     CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid)
277 mlosch 1.1 C FGMRES returns iCode either asking for an new preconditioned vector
278     C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
279     C iteration
280     IF (iCode.EQ.1) THEN
281 jmc 1.20 C Call preconditioner
282 mlosch 1.30 IF ( SEAICEpreconLinIter .GT. 0 )
283 jmc 1.20 & CALL SEAICE_PRECONDITIONER(
284     U duIce, dvIce,
285 mlosch 1.28 I zetaPre, etaPre, etaZpre, zetaZpre, dwatPre,
286 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
287     ELSEIF (iCode.GE.2) THEN
288     C Compute Jacobian times vector
289     CALL SEAICE_JACVEC(
290     I uIce, vIce, uIceRes, vIceRes,
291 jmc 1.20 U duIce, dvIce,
292 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
293     ENDIF
294     krylovConverged = iCode.EQ.0
295     C End of Krylov iterate
296     ENDDO
297 mlosch 1.5 totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
298 mlosch 1.1 C some output diagnostics
299     IF ( debugLevel.GE.debLevA ) THEN
300 mlosch 1.5 _BEGIN_MASTER( myThid )
301 jmc 1.20 totalNewtonItersLoc =
302 mlosch 1.30 & SEAICEnonLinIterMax*(myIter-nIter0)+newtonIter
303 jmc 1.20 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
304 mlosch 1.13 & ' S/R SEAICE_JFNK: Newton iterate / total, ',
305     & 'JFNKgamma_lin, initial norm = ',
306     & newtonIter, totalNewtonItersLoc,
307     & JFNKgamma_lin,JFNKresidual
308     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
309     & SQUEEZE_RIGHT, myThid )
310 mlosch 1.1 WRITE(msgBuf,'(3(A,I6))')
311 jmc 1.20 & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
312 mlosch 1.13 & ' / ', totalNewtonItersLoc,
313 mlosch 1.1 & ', Nb. of FGMRES iterations = ', krylovIter
314     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
315     & SQUEEZE_RIGHT, myThid )
316 mlosch 1.5 _END_MASTER( myThid )
317 mlosch 1.1 ENDIF
318 mlosch 1.30 IF ( krylovIter.EQ.SEAICElinearIterMax ) THEN
319 mlosch 1.5 krylovFails = krylovFails + 1
320 mlosch 1.1 ENDIF
321 mlosch 1.17 C Set the stopping criterion for the Newton iteration and the
322     C criterion for the transition from accurate to approximate FGMRES
323     IF ( newtonIter .EQ. 1 ) THEN
324 mlosch 1.30 JFNKtol=SEAICEnonLinTol*JFNKresidual
325 mlosch 1.17 IF ( JFNKres_tFac .NE. UNSET_RL )
326     & JFNKres_t = JFNKresidual * JFNKres_tFac
327     ENDIF
328 mlosch 1.1 C Update linear solution vector and return to Newton iteration
329 mlosch 1.15 C Do a linesearch if necessary, and compute a new residual.
330     C Note that it should be possible to do the following operations
331     C at the beginning of the Newton iteration, thereby saving us from
332     C the extra call of seaice_jfnk_update, but unfortunately that
333     C changes the results, so we leave the stuff here for now.
334 jmc 1.20 CALL SEAICE_JFNK_UPDATE(
335     I duIce, dvIce,
336 mlosch 1.15 U uIce, vIce, JFNKresidual,
337     O uIceRes, vIceRes,
338     I newtonIter, myTime, myIter, myThid )
339     C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
340 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
341     DO bi=myBxLo(myThid),myBxHi(myThid)
342 jmc 1.20 DO J=1-OLy,sNy+OLy
343     DO I=1-OLx,sNx+OLx
344 mlosch 1.4 duIce(I,J,bi,bj)= 0. _d 0
345     dvIce(I,J,bi,bj)= 0. _d 0
346 mlosch 1.1 ENDDO
347     ENDDO
348     ENDDO
349     ENDDO
350     ENDIF
351     C end of Newton iterate
352     ENDDO
353 jmc 1.20
354 mlosch 1.5 C-- Output diagnostics
355 jmc 1.20
356 mlosch 1.6 IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
357 mlosch 1.5 C Count iterations
358 mlosch 1.6 totalJFNKtimeSteps = totalJFNKtimeSteps + 1
359     totalNewtonIters = totalNewtonIters + newtonIter
360     totalKrylovIters = totalKrylovIters + totalKrylovItersLoc
361 mlosch 1.5 C Record failure
362 mlosch 1.6 totalKrylovFails = totalKrylovFails + krylovFails
363 mlosch 1.30 IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
364 jmc 1.20 totalNewtonFails = totalNewtonFails + 1
365 mlosch 1.6 ENDIF
366 mlosch 1.5 ENDIF
367     C Decide whether it is time to dump and reset the counter
368 mlosch 1.9 writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
369 jmc 1.20 & myTime+deltaTClock, deltaTClock)
370 mlosch 1.9 #ifdef ALLOW_CAL
371     IF ( useCAL ) THEN
372 jmc 1.20 CALL CAL_TIME2DUMP(
373 mlosch 1.9 I zeroRL, SEAICE_monFreq, deltaTClock,
374     U writeNow,
375     I myTime+deltaTclock, myIter+1, myThid )
376     ENDIF
377     #endif
378     IF ( writeNow ) THEN
379 mlosch 1.5 _BEGIN_MASTER( myThid )
380 jmc 1.20 WRITE(msgBuf,'(A)')
381 mlosch 1.5 &' // ======================================================='
382     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
383     & SQUEEZE_RIGHT, myThid )
384     WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
385     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
386     & SQUEEZE_RIGHT, myThid )
387 jmc 1.20 WRITE(msgBuf,'(A)')
388 mlosch 1.5 &' // ======================================================='
389     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
390     & SQUEEZE_RIGHT, myThid )
391 jmc 1.20 WRITE(msgBuf,'(A,I10)')
392 mlosch 1.5 & ' %JFNK_MON: time step = ', myIter+1
393     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
394     & SQUEEZE_RIGHT, myThid )
395 jmc 1.20 WRITE(msgBuf,'(A,I10)')
396 mlosch 1.5 & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps
397     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
398     & SQUEEZE_RIGHT, myThid )
399 jmc 1.20 WRITE(msgBuf,'(A,I10)')
400 mlosch 1.5 & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters
401     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
402     & SQUEEZE_RIGHT, myThid )
403 jmc 1.20 WRITE(msgBuf,'(A,I10)')
404 mlosch 1.5 & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters
405     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
406     & SQUEEZE_RIGHT, myThid )
407 jmc 1.20 WRITE(msgBuf,'(A,I10)')
408 mlosch 1.5 & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
409     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
410     & SQUEEZE_RIGHT, myThid )
411 jmc 1.20 WRITE(msgBuf,'(A,I10)')
412 mlosch 1.5 & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
413     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
414     & SQUEEZE_RIGHT, myThid )
415 jmc 1.20 WRITE(msgBuf,'(A)')
416 mlosch 1.5 &' // ======================================================='
417     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
418     & SQUEEZE_RIGHT, myThid )
419 mlosch 1.11 WRITE(msgBuf,'(A)') ' // End JFNK statistics'
420 mlosch 1.5 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
421     & SQUEEZE_RIGHT, myThid )
422 jmc 1.20 WRITE(msgBuf,'(A)')
423 mlosch 1.5 &' // ======================================================='
424     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
425     & SQUEEZE_RIGHT, myThid )
426     _END_MASTER( myThid )
427     C reset and start again
428     totalJFNKtimeSteps = 0
429     totalNewtonIters = 0
430     totalKrylovIters = 0
431     totalKrylovFails = 0
432     totalNewtonFails = 0
433     ENDIF
434    
435     C Print more debugging information
436 mlosch 1.1 IF ( debugLevel.GE.debLevA ) THEN
437 mlosch 1.30 IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN
438 mlosch 1.5 _BEGIN_MASTER( myThid )
439 jmc 1.20 WRITE(msgBuf,'(A,I10)')
440 mlosch 1.1 & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
441 mlosch 1.5 & myIter+1
442 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
443     & SQUEEZE_RIGHT, myThid )
444 mlosch 1.5 _END_MASTER( myThid )
445 mlosch 1.1 ENDIF
446 mlosch 1.5 IF ( krylovFails .GT. 0 ) THEN
447     _BEGIN_MASTER( myThid )
448 jmc 1.20 WRITE(msgBuf,'(A,I4,A,I10)')
449 mlosch 1.1 & ' S/R SEAICE_JFNK: FGMRES did not converge ',
450 mlosch 1.5 & krylovFails, ' times in timestep ', myIter+1
451 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
452     & SQUEEZE_RIGHT, myThid )
453 mlosch 1.5 _END_MASTER( myThid )
454 mlosch 1.1 ENDIF
455 mlosch 1.5 _BEGIN_MASTER( myThid )
456 jmc 1.20 WRITE(msgBuf,'(A,I6,A,I10)')
457 mlosch 1.1 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
458 mlosch 1.5 & totalKrylovItersLoc, ' in timestep ', myIter+1
459     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
460     & SQUEEZE_RIGHT, myThid )
461     _END_MASTER( myThid )
462 mlosch 1.1 ENDIF
463    
464 mlosch 1.15 RETURN
465     END
466    
467 mlosch 1.16 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
468 mlosch 1.15 CBOP
469     C !ROUTINE: SEAICE_JFNK_UPDATE
470     C !INTERFACE:
471    
472 jmc 1.20 SUBROUTINE SEAICE_JFNK_UPDATE(
473     I duIce, dvIce,
474 mlosch 1.15 U uIce, vIce, JFNKresidual,
475     O uIceRes, vIceRes,
476     I newtonIter, myTime, myIter, myThid )
477    
478     C !DESCRIPTION: \bv
479     C *==========================================================*
480     C | SUBROUTINE SEAICE_JFNK_UPDATE
481     C | o Update velocities with incremental solutions of FGMRES
482     C | o compute residual of updated solutions and do
483     C | o linesearch:
484     C | reduce update until residual is smaller than previous
485     C | one (input)
486     C *==========================================================*
487     C | written by Martin Losch, Jan 2013
488     C *==========================================================*
489     C \ev
490    
491     C !USES:
492     IMPLICIT NONE
493    
494     C === Global variables ===
495     #include "SIZE.h"
496     #include "EEPARAMS.h"
497     #include "PARAMS.h"
498     #include "SEAICE_SIZE.h"
499     #include "SEAICE_PARAMS.h"
500    
501     C !INPUT/OUTPUT PARAMETERS:
502     C === Routine arguments ===
503     C myTime :: Simulation time
504     C myIter :: Simulation timestep number
505     C myThid :: my Thread Id. number
506     C newtonIter :: current iterate of Newton iteration
507     _RL myTime
508     INTEGER myIter
509     INTEGER myThid
510     INTEGER newtonIter
511     C JFNKresidual :: Residual at the beginning of the FGMRES iteration,
512     C changes with newtonIter (updated)
513     _RL JFNKresidual
514     C du/vIce :: ice velocity increment to be added to u/vIce (input)
515     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
516     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
517     C u/vIce :: ice velocity increment to be added to u/vIce (updated)
518     _RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
519     _RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
520     C u/vIceRes :: residual of sea-ice momentum equations (output)
521     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
522     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
523    
524 mlosch 1.16 C !LOCAL VARIABLES:
525     C === Local variables ===
526 mlosch 1.15 C i,j,bi,bj :: loop indices
527     INTEGER i,j,bi,bj
528     INTEGER l
529     _RL resLoc, facLS
530     LOGICAL doLineSearch
531     C nVec :: size of the input vector(s)
532 jmc 1.20 C resTmp :: vector version of the residuals
533 mlosch 1.15 INTEGER nVec
534     PARAMETER ( nVec = 2*sNx*sNy )
535     _RL resTmp (nVec,1,nSx,nSy)
536 jmc 1.20
537 mlosch 1.15 CHARACTER*(MAX_LEN_MBUF) msgBuf
538     CEOP
539    
540     C Initialise some local variables
541     l = 0
542     resLoc = JFNKresidual
543     facLS = 1. _d 0
544     doLineSearch = .TRUE.
545     DO WHILE ( doLineSearch )
546     C Create update
547     DO bj=myByLo(myThid),myByHi(myThid)
548     DO bi=myBxLo(myThid),myBxHi(myThid)
549 jmc 1.20 DO J=1-OLy,sNy+OLy
550     DO I=1-OLx,sNx+OLx
551 mlosch 1.15 uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
552     vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
553     ENDDO
554     ENDDO
555     ENDDO
556     ENDDO
557     C Compute current residual F(u), (includes re-computation of global
558     C variables DWATN, zeta, and eta, i.e. they are different after this)
559 jmc 1.20 CALL SEAICE_CALC_RESIDUAL(
560     I uIce, vIce,
561     O uIceRes, vIceRes,
562 mlosch 1.15 I newtonIter, 0, myTime, myIter, myThid )
563     C Important: Compute the norm of the residual using the same scalar
564     C product that SEAICE_FGMRES does
565     CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
566     CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
567     resLoc = SQRT(resLoc)
568 mlosch 1.19 C Determine, if we need more iterations
569 jmc 1.20 doLineSearch = resLoc .GE. JFNKresidual
570 mlosch 1.19 C Limit the maximum number of iterations arbitrarily to four
571 jmc 1.20 doLineSearch = doLineSearch .AND. l .LT. 4
572 mlosch 1.19 C For the first iteration du/vIce = 0 and there will be no
573     C improvement of the residual possible, so we do only the first
574     C iteration
575     IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
576     C Only start a linesearch after some Newton iterations
577     IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
578     C Increment counter
579     l = l + 1
580 mlosch 1.15 C some output diagnostics
581     IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
582     _BEGIN_MASTER( myThid )
583 jmc 1.20 WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
584 mlosch 1.15 & ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
585     & 'facLS, JFNKresidual, resLoc = ',
586     & newtonIter, l, facLS, JFNKresidual, resLoc
587     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
588     & SQUEEZE_RIGHT, myThid )
589     _END_MASTER( myThid )
590     ENDIF
591     C Get ready for the next iteration: after adding du/vIce in the first
592     C iteration, we substract 0.5*du/vIce from u/vIce in the next
593     C iterations, 0.25*du/vIce in the second, etc.
594     facLS = - 0.5 _d 0 * ABS(facLS)
595     ENDDO
596     C This is the new residual
597     JFNKresidual = resLoc
598    
599 mlosch 1.21 #endif /* SEAICE_ALLOW_JFNK */
600 mlosch 1.1
601     RETURN
602     END

  ViewVC Help
Powered by ViewVC 1.1.22