| 1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.30 2016/01/28 12:54:12 mlosch Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "SEAICE_OPTIONS.h" |
| 5 |
#ifdef ALLOW_AUTODIFF |
| 6 |
# include "AUTODIFF_OPTIONS.h" |
| 7 |
#endif |
| 8 |
|
| 9 |
C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: |
| 10 |
C-- Contents |
| 11 |
C-- o SEAICE_JFNK |
| 12 |
C-- o SEAICE_JFNK_UPDATE |
| 13 |
|
| 14 |
CBOP |
| 15 |
C !ROUTINE: SEAICE_JFNK |
| 16 |
C !INTERFACE: |
| 17 |
SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid ) |
| 18 |
|
| 19 |
C !DESCRIPTION: \bv |
| 20 |
C *==========================================================* |
| 21 |
C | SUBROUTINE SEAICE_JFNK |
| 22 |
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
| 23 |
C | following J.-F. Lemieux et al. Improving the numerical |
| 24 |
C | convergence of viscous-plastic sea ice models with the |
| 25 |
C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229, |
| 26 |
C | 2840-2852 (2010). |
| 27 |
C | o The logic follows JFs code. |
| 28 |
C *==========================================================* |
| 29 |
C | written by Martin Losch, Oct 2012 |
| 30 |
C *==========================================================* |
| 31 |
C \ev |
| 32 |
|
| 33 |
C !USES: |
| 34 |
IMPLICIT NONE |
| 35 |
|
| 36 |
C === Global variables === |
| 37 |
#include "SIZE.h" |
| 38 |
#include "EEPARAMS.h" |
| 39 |
#include "PARAMS.h" |
| 40 |
#include "DYNVARS.h" |
| 41 |
#include "GRID.h" |
| 42 |
#include "SEAICE_SIZE.h" |
| 43 |
#include "SEAICE_PARAMS.h" |
| 44 |
#include "SEAICE.h" |
| 45 |
|
| 46 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 47 |
# include "tamc.h" |
| 48 |
#endif |
| 49 |
|
| 50 |
C !INPUT/OUTPUT PARAMETERS: |
| 51 |
C === Routine arguments === |
| 52 |
C myTime :: Simulation time |
| 53 |
C myIter :: Simulation timestep number |
| 54 |
C myThid :: my Thread Id. number |
| 55 |
_RL myTime |
| 56 |
INTEGER myIter |
| 57 |
INTEGER myThid |
| 58 |
|
| 59 |
#ifdef SEAICE_ALLOW_JFNK |
| 60 |
C !FUNCTIONS: |
| 61 |
LOGICAL DIFFERENT_MULTIPLE |
| 62 |
EXTERNAL DIFFERENT_MULTIPLE |
| 63 |
|
| 64 |
C !LOCAL VARIABLES: |
| 65 |
C === Local variables === |
| 66 |
C i,j,bi,bj :: loop indices |
| 67 |
INTEGER i,j,bi,bj |
| 68 |
C loop indices |
| 69 |
INTEGER newtonIter |
| 70 |
INTEGER krylovIter, krylovFails |
| 71 |
INTEGER totalKrylovItersLoc, totalNewtonItersLoc |
| 72 |
C FGMRES parameters |
| 73 |
C im :: size of Krylov space |
| 74 |
C ifgmres :: interation counter |
| 75 |
INTEGER im |
| 76 |
PARAMETER ( im = 50 ) |
| 77 |
INTEGER ifgmres |
| 78 |
C FGMRES flag that determines amount of output messages of fgmres |
| 79 |
INTEGER iOutFGMRES |
| 80 |
C FGMRES flag that indicates what fgmres wants us to do next |
| 81 |
INTEGER iCode |
| 82 |
_RL JFNKresidual |
| 83 |
_RL JFNKresidualKm1 |
| 84 |
C parameters to compute convergence criterion |
| 85 |
_RL JFNKgamma_lin |
| 86 |
_RL FGMRESeps |
| 87 |
_RL JFNKtol |
| 88 |
C backward differences extrapolation factors |
| 89 |
_RL bdfFac, bdfAlpha |
| 90 |
C |
| 91 |
_RL recip_deltaT |
| 92 |
LOGICAL JFNKconverged, krylovConverged |
| 93 |
LOGICAL writeNow |
| 94 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
| 95 |
|
| 96 |
C u/vIceRes :: residual of sea-ice momentum equations |
| 97 |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 98 |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 99 |
C extra time level required for backward difference time stepping |
| 100 |
_RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 101 |
_RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 102 |
C du/vIce :: ice velocity increment to be added to u/vIce |
| 103 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 104 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 105 |
C precomputed (= constant per Newton iteration) versions of |
| 106 |
C zeta, eta, and DWATN, press |
| 107 |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 108 |
_RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 109 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 110 |
_RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 111 |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 112 |
C work arrays |
| 113 |
_RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy) |
| 114 |
_RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy) |
| 115 |
_RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy) |
| 116 |
CEOP |
| 117 |
|
| 118 |
C Initialise |
| 119 |
newtonIter = 0 |
| 120 |
krylovFails = 0 |
| 121 |
totalKrylovItersLoc = 0 |
| 122 |
JFNKconverged = .FALSE. |
| 123 |
JFNKtol = 0. _d 0 |
| 124 |
JFNKresidual = 0. _d 0 |
| 125 |
JFNKresidualKm1 = 0. _d 0 |
| 126 |
FGMRESeps = 0. _d 0 |
| 127 |
recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn |
| 128 |
|
| 129 |
iOutFGMRES=0 |
| 130 |
C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration |
| 131 |
IF ( debugLevel.GE.debLevC .AND. |
| 132 |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
| 133 |
& iOutFGMRES=1 |
| 134 |
|
| 135 |
C backward difference extrapolation factors |
| 136 |
bdfFac = 0. _d 0 |
| 137 |
IF ( SEAICEuseBDF2 ) THEN |
| 138 |
IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN |
| 139 |
bdfFac = 0. _d 0 |
| 140 |
ELSE |
| 141 |
bdfFac = 0.5 _d 0 |
| 142 |
ENDIF |
| 143 |
ENDIF |
| 144 |
bdfAlpha = 1. _d 0 + bdfFac |
| 145 |
|
| 146 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 147 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 148 |
DO J=1-OLy,sNy+OLy |
| 149 |
DO I=1-OLx,sNx+OLx |
| 150 |
uIceRes(I,J,bi,bj) = 0. _d 0 |
| 151 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
| 152 |
duIce (I,J,bi,bj) = 0. _d 0 |
| 153 |
dvIce (I,J,bi,bj) = 0. _d 0 |
| 154 |
ENDDO |
| 155 |
ENDDO |
| 156 |
C cycle ice velocities |
| 157 |
DO J=1-OLy,sNy+OLy |
| 158 |
DO I=1-OLx,sNx+OLx |
| 159 |
duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha |
| 160 |
& + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac |
| 161 |
dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha |
| 162 |
& + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac |
| 163 |
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
| 164 |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
| 165 |
ENDDO |
| 166 |
ENDDO |
| 167 |
C As long as IMEX is not properly implemented leave this commented out |
| 168 |
CML IF ( .NOT.SEAICEuseIMEX ) THEN |
| 169 |
C Compute things that do no change during the Newton iteration: |
| 170 |
C sea-surface tilt and wind stress: |
| 171 |
C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT |
| 172 |
DO J=1-OLy,sNy+OLy |
| 173 |
DO I=1-OLx,sNx+OLx |
| 174 |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
| 175 |
& + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT |
| 176 |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
| 177 |
& + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT |
| 178 |
ENDDO |
| 179 |
ENDDO |
| 180 |
CML ENDIF |
| 181 |
ENDDO |
| 182 |
ENDDO |
| 183 |
C Start nonlinear Newton iteration: outer loop iteration |
| 184 |
DO WHILE ( newtonIter.LT.SEAICEnonLinIterMax .AND. |
| 185 |
& .NOT.JFNKconverged ) |
| 186 |
newtonIter = newtonIter + 1 |
| 187 |
C Compute initial residual F(u), (includes computation of global |
| 188 |
C variables DWATN, zeta, and eta) |
| 189 |
IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( |
| 190 |
I duIce, dvIce, |
| 191 |
U uIce, vIce, JFNKresidual, |
| 192 |
O uIceRes, vIceRes, |
| 193 |
I newtonIter, myTime, myIter, myThid ) |
| 194 |
C local copies of precomputed coefficients that are to stay |
| 195 |
C constant for the preconditioner |
| 196 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 197 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 198 |
DO j=1-OLy,sNy+OLy |
| 199 |
DO i=1-OLx,sNx+OLx |
| 200 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
| 201 |
zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj) |
| 202 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
| 203 |
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
| 204 |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
| 205 |
ENDDO |
| 206 |
ENDDO |
| 207 |
ENDDO |
| 208 |
ENDDO |
| 209 |
C compute convergence criterion for linear preconditioned FGMRES |
| 210 |
JFNKgamma_lin = JFNKgamma_lin_max |
| 211 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter |
| 212 |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
| 213 |
C Eisenstat and Walker (1996), eq.(2.6) |
| 214 |
JFNKgamma_lin = SEAICE_JFNKphi |
| 215 |
& *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha |
| 216 |
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
| 217 |
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
| 218 |
ENDIF |
| 219 |
C save the residual for the next iteration |
| 220 |
JFNKresidualKm1 = JFNKresidual |
| 221 |
|
| 222 |
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
| 223 |
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
| 224 |
C down. |
| 225 |
C krylovIter is mapped into "its" in seaice_fgmres and is incremented |
| 226 |
C in that routine |
| 227 |
krylovIter = 0 |
| 228 |
iCode = 0 |
| 229 |
|
| 230 |
JFNKconverged = JFNKresidual.LT.JFNKtol |
| 231 |
& .OR.JFNKresidual.EQ.0. _d 0 |
| 232 |
|
| 233 |
C do Krylov loop only if convergence is not reached |
| 234 |
|
| 235 |
IF ( .NOT.JFNKconverged ) THEN |
| 236 |
|
| 237 |
C start Krylov iteration (FGMRES) |
| 238 |
|
| 239 |
krylovConverged = .FALSE. |
| 240 |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
| 241 |
C map first guess sol; it is zero because the solution is a correction |
| 242 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid) |
| 243 |
C map rhs and change its sign because we are solving J*u = -F |
| 244 |
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid) |
| 245 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 246 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 247 |
DO j=1,nVec |
| 248 |
rhs(j,bi,bj) = - rhs(j,bi,bj) |
| 249 |
ENDDO |
| 250 |
ENDDO |
| 251 |
ENDDO |
| 252 |
DO WHILE ( .NOT.krylovConverged ) |
| 253 |
C solution vector sol = du/vIce |
| 254 |
C residual vector (rhs) Fu = u/vIceRes |
| 255 |
C output work vectors wk1, -> input work vector wk2 |
| 256 |
|
| 257 |
C map preconditioner results or Jacobian times vector, |
| 258 |
C stored in du/vIce to wk2, for iCode=0, wk2 is set to zero, |
| 259 |
C because du/vIce = 0 |
| 260 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid) |
| 261 |
C |
| 262 |
CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter, |
| 263 |
U vv,w,wk1,wk2, |
| 264 |
I FGMRESeps,SEAICElinearIterMax,iOutFGMRES, |
| 265 |
U iCode, |
| 266 |
I myThid) |
| 267 |
C |
| 268 |
IF ( iCode .EQ. 0 ) THEN |
| 269 |
C map sol(ution) vector to du/vIce |
| 270 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid) |
| 271 |
ELSE |
| 272 |
C map work vector to du/vIce to either compute a preconditioner |
| 273 |
C solution (wk1=rhs) or a Jacobian times wk1 |
| 274 |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid) |
| 275 |
ENDIF |
| 276 |
C Fill overlaps in updated fields |
| 277 |
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
| 278 |
C FGMRES returns iCode either asking for an new preconditioned vector |
| 279 |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
| 280 |
C iteration |
| 281 |
IF (iCode.EQ.1) THEN |
| 282 |
C Call preconditioner |
| 283 |
IF ( SEAICEpreconLinIter .GT. 0 ) |
| 284 |
& CALL SEAICE_PRECONDITIONER( |
| 285 |
U duIce, dvIce, |
| 286 |
I zetaPre, etaPre, etaZpre, zetaZpre, dwatPre, |
| 287 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 288 |
ELSEIF (iCode.GE.2) THEN |
| 289 |
C Compute Jacobian times vector |
| 290 |
CALL SEAICE_JACVEC( |
| 291 |
I uIce, vIce, uIceRes, vIceRes, |
| 292 |
U duIce, dvIce, |
| 293 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 294 |
ENDIF |
| 295 |
krylovConverged = iCode.EQ.0 |
| 296 |
C End of Krylov iterate |
| 297 |
ENDDO |
| 298 |
totalKrylovItersLoc = totalKrylovItersLoc + krylovIter |
| 299 |
C some output diagnostics |
| 300 |
IF ( debugLevel.GE.debLevA ) THEN |
| 301 |
_BEGIN_MASTER( myThid ) |
| 302 |
totalNewtonItersLoc = |
| 303 |
& SEAICEnonLinIterMax*(myIter-nIter0)+newtonIter |
| 304 |
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
| 305 |
& ' S/R SEAICE_JFNK: Newton iterate / total, ', |
| 306 |
& 'JFNKgamma_lin, initial norm = ', |
| 307 |
& newtonIter, totalNewtonItersLoc, |
| 308 |
& JFNKgamma_lin,JFNKresidual |
| 309 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 310 |
& SQUEEZE_RIGHT, myThid ) |
| 311 |
WRITE(msgBuf,'(3(A,I6))') |
| 312 |
& ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, |
| 313 |
& ' / ', totalNewtonItersLoc, |
| 314 |
& ', Nb. of FGMRES iterations = ', krylovIter |
| 315 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 316 |
& SQUEEZE_RIGHT, myThid ) |
| 317 |
_END_MASTER( myThid ) |
| 318 |
ENDIF |
| 319 |
IF ( krylovIter.EQ.SEAICElinearIterMax ) THEN |
| 320 |
krylovFails = krylovFails + 1 |
| 321 |
ENDIF |
| 322 |
C Set the stopping criterion for the Newton iteration and the |
| 323 |
C criterion for the transition from accurate to approximate FGMRES |
| 324 |
IF ( newtonIter .EQ. 1 ) THEN |
| 325 |
JFNKtol=SEAICEnonLinTol*JFNKresidual |
| 326 |
IF ( JFNKres_tFac .NE. UNSET_RL ) |
| 327 |
& JFNKres_t = JFNKresidual * JFNKres_tFac |
| 328 |
ENDIF |
| 329 |
C Update linear solution vector and return to Newton iteration |
| 330 |
C Do a linesearch if necessary, and compute a new residual. |
| 331 |
C Note that it should be possible to do the following operations |
| 332 |
C at the beginning of the Newton iteration, thereby saving us from |
| 333 |
C the extra call of seaice_jfnk_update, but unfortunately that |
| 334 |
C changes the results, so we leave the stuff here for now. |
| 335 |
CALL SEAICE_JFNK_UPDATE( |
| 336 |
I duIce, dvIce, |
| 337 |
U uIce, vIce, JFNKresidual, |
| 338 |
O uIceRes, vIceRes, |
| 339 |
I newtonIter, myTime, myIter, myThid ) |
| 340 |
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
| 341 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 342 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 343 |
DO J=1-OLy,sNy+OLy |
| 344 |
DO I=1-OLx,sNx+OLx |
| 345 |
duIce(I,J,bi,bj)= 0. _d 0 |
| 346 |
dvIce(I,J,bi,bj)= 0. _d 0 |
| 347 |
ENDDO |
| 348 |
ENDDO |
| 349 |
ENDDO |
| 350 |
ENDDO |
| 351 |
ENDIF |
| 352 |
C end of Newton iterate |
| 353 |
ENDDO |
| 354 |
|
| 355 |
C-- Output diagnostics |
| 356 |
|
| 357 |
IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN |
| 358 |
C Count iterations |
| 359 |
totalJFNKtimeSteps = totalJFNKtimeSteps + 1 |
| 360 |
totalNewtonIters = totalNewtonIters + newtonIter |
| 361 |
totalKrylovIters = totalKrylovIters + totalKrylovItersLoc |
| 362 |
C Record failure |
| 363 |
totalKrylovFails = totalKrylovFails + krylovFails |
| 364 |
IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN |
| 365 |
totalNewtonFails = totalNewtonFails + 1 |
| 366 |
ENDIF |
| 367 |
ENDIF |
| 368 |
C Decide whether it is time to dump and reset the counter |
| 369 |
writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, |
| 370 |
& myTime+deltaTClock, deltaTClock) |
| 371 |
#ifdef ALLOW_CAL |
| 372 |
IF ( useCAL ) THEN |
| 373 |
CALL CAL_TIME2DUMP( |
| 374 |
I zeroRL, SEAICE_monFreq, deltaTClock, |
| 375 |
U writeNow, |
| 376 |
I myTime+deltaTclock, myIter+1, myThid ) |
| 377 |
ENDIF |
| 378 |
#endif |
| 379 |
IF ( writeNow ) THEN |
| 380 |
_BEGIN_MASTER( myThid ) |
| 381 |
WRITE(msgBuf,'(A)') |
| 382 |
&' // =======================================================' |
| 383 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 384 |
& SQUEEZE_RIGHT, myThid ) |
| 385 |
WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' |
| 386 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 387 |
& SQUEEZE_RIGHT, myThid ) |
| 388 |
WRITE(msgBuf,'(A)') |
| 389 |
&' // =======================================================' |
| 390 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 391 |
& SQUEEZE_RIGHT, myThid ) |
| 392 |
WRITE(msgBuf,'(A,I10)') |
| 393 |
& ' %JFNK_MON: time step = ', myIter+1 |
| 394 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 395 |
& SQUEEZE_RIGHT, myThid ) |
| 396 |
WRITE(msgBuf,'(A,I10)') |
| 397 |
& ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps |
| 398 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 399 |
& SQUEEZE_RIGHT, myThid ) |
| 400 |
WRITE(msgBuf,'(A,I10)') |
| 401 |
& ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters |
| 402 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 403 |
& SQUEEZE_RIGHT, myThid ) |
| 404 |
WRITE(msgBuf,'(A,I10)') |
| 405 |
& ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters |
| 406 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 407 |
& SQUEEZE_RIGHT, myThid ) |
| 408 |
WRITE(msgBuf,'(A,I10)') |
| 409 |
& ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails |
| 410 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 411 |
& SQUEEZE_RIGHT, myThid ) |
| 412 |
WRITE(msgBuf,'(A,I10)') |
| 413 |
& ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails |
| 414 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 415 |
& SQUEEZE_RIGHT, myThid ) |
| 416 |
WRITE(msgBuf,'(A)') |
| 417 |
&' // =======================================================' |
| 418 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 419 |
& SQUEEZE_RIGHT, myThid ) |
| 420 |
WRITE(msgBuf,'(A)') ' // End JFNK statistics' |
| 421 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 422 |
& SQUEEZE_RIGHT, myThid ) |
| 423 |
WRITE(msgBuf,'(A)') |
| 424 |
&' // =======================================================' |
| 425 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 426 |
& SQUEEZE_RIGHT, myThid ) |
| 427 |
_END_MASTER( myThid ) |
| 428 |
C reset and start again |
| 429 |
totalJFNKtimeSteps = 0 |
| 430 |
totalNewtonIters = 0 |
| 431 |
totalKrylovIters = 0 |
| 432 |
totalKrylovFails = 0 |
| 433 |
totalNewtonFails = 0 |
| 434 |
ENDIF |
| 435 |
|
| 436 |
C Print more debugging information |
| 437 |
IF ( debugLevel.GE.debLevA ) THEN |
| 438 |
IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN |
| 439 |
_BEGIN_MASTER( myThid ) |
| 440 |
WRITE(msgBuf,'(A,I10)') |
| 441 |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
| 442 |
& myIter+1 |
| 443 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 444 |
& SQUEEZE_RIGHT, myThid ) |
| 445 |
_END_MASTER( myThid ) |
| 446 |
ENDIF |
| 447 |
IF ( krylovFails .GT. 0 ) THEN |
| 448 |
_BEGIN_MASTER( myThid ) |
| 449 |
WRITE(msgBuf,'(A,I4,A,I10)') |
| 450 |
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
| 451 |
& krylovFails, ' times in timestep ', myIter+1 |
| 452 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 453 |
& SQUEEZE_RIGHT, myThid ) |
| 454 |
_END_MASTER( myThid ) |
| 455 |
ENDIF |
| 456 |
_BEGIN_MASTER( myThid ) |
| 457 |
WRITE(msgBuf,'(A,I6,A,I10)') |
| 458 |
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
| 459 |
& totalKrylovItersLoc, ' in timestep ', myIter+1 |
| 460 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 461 |
& SQUEEZE_RIGHT, myThid ) |
| 462 |
_END_MASTER( myThid ) |
| 463 |
ENDIF |
| 464 |
|
| 465 |
RETURN |
| 466 |
END |
| 467 |
|
| 468 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 469 |
CBOP |
| 470 |
C !ROUTINE: SEAICE_JFNK_UPDATE |
| 471 |
C !INTERFACE: |
| 472 |
|
| 473 |
SUBROUTINE SEAICE_JFNK_UPDATE( |
| 474 |
I duIce, dvIce, |
| 475 |
U uIce, vIce, JFNKresidual, |
| 476 |
O uIceRes, vIceRes, |
| 477 |
I newtonIter, myTime, myIter, myThid ) |
| 478 |
|
| 479 |
C !DESCRIPTION: \bv |
| 480 |
C *==========================================================* |
| 481 |
C | SUBROUTINE SEAICE_JFNK_UPDATE |
| 482 |
C | o Update velocities with incremental solutions of FGMRES |
| 483 |
C | o compute residual of updated solutions and do |
| 484 |
C | o linesearch: |
| 485 |
C | reduce update until residual is smaller than previous |
| 486 |
C | one (input) |
| 487 |
C *==========================================================* |
| 488 |
C | written by Martin Losch, Jan 2013 |
| 489 |
C *==========================================================* |
| 490 |
C \ev |
| 491 |
|
| 492 |
C !USES: |
| 493 |
IMPLICIT NONE |
| 494 |
|
| 495 |
C === Global variables === |
| 496 |
#include "SIZE.h" |
| 497 |
#include "EEPARAMS.h" |
| 498 |
#include "PARAMS.h" |
| 499 |
#include "SEAICE_SIZE.h" |
| 500 |
#include "SEAICE_PARAMS.h" |
| 501 |
|
| 502 |
C !INPUT/OUTPUT PARAMETERS: |
| 503 |
C === Routine arguments === |
| 504 |
C myTime :: Simulation time |
| 505 |
C myIter :: Simulation timestep number |
| 506 |
C myThid :: my Thread Id. number |
| 507 |
C newtonIter :: current iterate of Newton iteration |
| 508 |
_RL myTime |
| 509 |
INTEGER myIter |
| 510 |
INTEGER myThid |
| 511 |
INTEGER newtonIter |
| 512 |
C JFNKresidual :: Residual at the beginning of the FGMRES iteration, |
| 513 |
C changes with newtonIter (updated) |
| 514 |
_RL JFNKresidual |
| 515 |
C du/vIce :: ice velocity increment to be added to u/vIce (input) |
| 516 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 517 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 518 |
C u/vIce :: ice velocity increment to be added to u/vIce (updated) |
| 519 |
_RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 520 |
_RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 521 |
C u/vIceRes :: residual of sea-ice momentum equations (output) |
| 522 |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 523 |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 524 |
|
| 525 |
C !LOCAL VARIABLES: |
| 526 |
C === Local variables === |
| 527 |
C i,j,bi,bj :: loop indices |
| 528 |
INTEGER i,j,bi,bj |
| 529 |
INTEGER l |
| 530 |
_RL resLoc, facLS |
| 531 |
LOGICAL doLineSearch |
| 532 |
C nVec :: size of the input vector(s) |
| 533 |
C resTmp :: vector version of the residuals |
| 534 |
INTEGER nVec |
| 535 |
PARAMETER ( nVec = 2*sNx*sNy ) |
| 536 |
_RL resTmp (nVec,1,nSx,nSy) |
| 537 |
|
| 538 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
| 539 |
CEOP |
| 540 |
|
| 541 |
C Initialise some local variables |
| 542 |
l = 0 |
| 543 |
resLoc = JFNKresidual |
| 544 |
facLS = 1. _d 0 |
| 545 |
doLineSearch = .TRUE. |
| 546 |
DO WHILE ( doLineSearch ) |
| 547 |
C Create update |
| 548 |
DO bj=myByLo(myThid),myByHi(myThid) |
| 549 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 550 |
DO J=1-OLy,sNy+OLy |
| 551 |
DO I=1-OLx,sNx+OLx |
| 552 |
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) |
| 553 |
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) |
| 554 |
ENDDO |
| 555 |
ENDDO |
| 556 |
ENDDO |
| 557 |
ENDDO |
| 558 |
C Compute current residual F(u), (includes re-computation of global |
| 559 |
C variables DWATN, zeta, and eta, i.e. they are different after this) |
| 560 |
CALL SEAICE_CALC_RESIDUAL( |
| 561 |
I uIce, vIce, |
| 562 |
O uIceRes, vIceRes, |
| 563 |
I newtonIter, 0, myTime, myIter, myThid ) |
| 564 |
C Important: Compute the norm of the residual using the same scalar |
| 565 |
C product that SEAICE_FGMRES does |
| 566 |
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
| 567 |
CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) |
| 568 |
resLoc = SQRT(resLoc) |
| 569 |
C Determine, if we need more iterations |
| 570 |
doLineSearch = resLoc .GE. JFNKresidual |
| 571 |
C Limit the maximum number of iterations arbitrarily to four |
| 572 |
doLineSearch = doLineSearch .AND. l .LT. 4 |
| 573 |
C For the first iteration du/vIce = 0 and there will be no |
| 574 |
C improvement of the residual possible, so we do only the first |
| 575 |
C iteration |
| 576 |
IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. |
| 577 |
C Only start a linesearch after some Newton iterations |
| 578 |
IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. |
| 579 |
C Increment counter |
| 580 |
l = l + 1 |
| 581 |
C some output diagnostics |
| 582 |
IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN |
| 583 |
_BEGIN_MASTER( myThid ) |
| 584 |
WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') |
| 585 |
& ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', |
| 586 |
& 'facLS, JFNKresidual, resLoc = ', |
| 587 |
& newtonIter, l, facLS, JFNKresidual, resLoc |
| 588 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 589 |
& SQUEEZE_RIGHT, myThid ) |
| 590 |
_END_MASTER( myThid ) |
| 591 |
ENDIF |
| 592 |
C Get ready for the next iteration: after adding du/vIce in the first |
| 593 |
C iteration, we substract 0.5*du/vIce from u/vIce in the next |
| 594 |
C iterations, 0.25*du/vIce in the second, etc. |
| 595 |
facLS = - 0.5 _d 0 * ABS(facLS) |
| 596 |
ENDDO |
| 597 |
C This is the new residual |
| 598 |
JFNKresidual = resLoc |
| 599 |
|
| 600 |
#endif /* SEAICE_ALLOW_JFNK */ |
| 601 |
|
| 602 |
RETURN |
| 603 |
END |