| 86 |
C zeta, eta, and DWATN, press |
C zeta, eta, and DWATN, press |
| 87 |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 88 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 89 |
|
_RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 90 |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 91 |
_RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 92 |
CEOP |
CEOP |
| 153 |
DO i=1-Olx,sNx+Olx |
DO i=1-Olx,sNx+Olx |
| 154 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
| 155 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
| 156 |
|
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
| 157 |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
| 158 |
pressPre(I,J,bi,bj) = press(I,J,bi,bj) |
pressPre(I,J,bi,bj) = press(I,J,bi,bj) |
| 159 |
ENDDO |
ENDDO |
| 242 |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
| 243 |
C iteration |
C iteration |
| 244 |
IF (iCode.EQ.1) THEN |
IF (iCode.EQ.1) THEN |
| 245 |
C Call preconditioner |
C Call preconditioner |
| 246 |
CALL SEAICE_PRECONDITIONER( |
IF ( SOLV_MAX_ITERS .GT. 0 ) |
| 247 |
|
& CALL SEAICE_PRECONDITIONER( |
| 248 |
U duIce, dvIce, |
U duIce, dvIce, |
| 249 |
I zetaPre, etaPre, dwatPre, pressPre, |
I zetaPre, etaPre, etaZpre, dwatPre, pressPre, |
| 250 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 251 |
ELSEIF (iCode.GE.2) THEN |
ELSEIF (iCode.GE.2) THEN |
| 252 |
C Compute Jacobian times vector |
C Compute Jacobian times vector |