| 2 |
C $Name$ |
C $Name$ |
| 3 |
|
|
| 4 |
#include "SEAICE_OPTIONS.h" |
#include "SEAICE_OPTIONS.h" |
| 5 |
|
#ifdef ALLOW_AUTODIFF |
| 6 |
|
# include "AUTODIFF_OPTIONS.h" |
| 7 |
|
#endif |
| 8 |
|
|
| 9 |
C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: |
C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R: |
| 10 |
C-- Contents |
C-- Contents |
| 69 |
INTEGER newtonIter |
INTEGER newtonIter |
| 70 |
INTEGER krylovIter, krylovFails |
INTEGER krylovIter, krylovFails |
| 71 |
INTEGER totalKrylovItersLoc, totalNewtonItersLoc |
INTEGER totalKrylovItersLoc, totalNewtonItersLoc |
| 72 |
|
C FGMRES parameters |
| 73 |
|
C im :: size of Krylov space |
| 74 |
|
C ifgmres :: interation counter |
| 75 |
|
INTEGER im |
| 76 |
|
PARAMETER ( im = 50 ) |
| 77 |
|
INTEGER ifgmres |
| 78 |
C FGMRES flag that determines amount of output messages of fgmres |
C FGMRES flag that determines amount of output messages of fgmres |
| 79 |
INTEGER iOutFGMRES |
INTEGER iOutFGMRES |
| 80 |
C FGMRES flag that indicates what fgmres wants us to do next |
C FGMRES flag that indicates what fgmres wants us to do next |
| 105 |
C precomputed (= constant per Newton iteration) versions of |
C precomputed (= constant per Newton iteration) versions of |
| 106 |
C zeta, eta, and DWATN, press |
C zeta, eta, and DWATN, press |
| 107 |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 108 |
|
_RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 109 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 110 |
_RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 111 |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 112 |
|
C work arrays |
| 113 |
|
_RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy) |
| 114 |
|
_RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy) |
| 115 |
|
_RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy) |
| 116 |
CEOP |
CEOP |
| 117 |
|
|
| 118 |
C Initialise |
C Initialise |
| 164 |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
| 165 |
ENDDO |
ENDDO |
| 166 |
ENDDO |
ENDDO |
| 167 |
IF ( .NOT.SEAICEuseIMEX ) THEN |
C As long as IMEX is not properly implemented leave this commented out |
| 168 |
|
CML IF ( .NOT.SEAICEuseIMEX ) THEN |
| 169 |
C Compute things that do no change during the Newton iteration: |
C Compute things that do no change during the Newton iteration: |
| 170 |
C sea-surface tilt and wind stress: |
C sea-surface tilt and wind stress: |
| 171 |
C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT |
C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT |
| 177 |
& + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT |
& + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT |
| 178 |
ENDDO |
ENDDO |
| 179 |
ENDDO |
ENDDO |
| 180 |
ENDIF |
CML ENDIF |
| 181 |
ENDDO |
ENDDO |
| 182 |
ENDDO |
ENDDO |
| 183 |
C Start nonlinear Newton iteration: outer loop iteration |
C Start nonlinear Newton iteration: outer loop iteration |
| 184 |
DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND. |
DO WHILE ( newtonIter.LT.SEAICEnonLinIterMax .AND. |
| 185 |
& .NOT.JFNKconverged ) |
& .NOT.JFNKconverged ) |
| 186 |
newtonIter = newtonIter + 1 |
newtonIter = newtonIter + 1 |
| 187 |
C Compute initial residual F(u), (includes computation of global |
C Compute initial residual F(u), (includes computation of global |
| 198 |
DO j=1-OLy,sNy+OLy |
DO j=1-OLy,sNy+OLy |
| 199 |
DO i=1-OLx,sNx+OLx |
DO i=1-OLx,sNx+OLx |
| 200 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
| 201 |
|
zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj) |
| 202 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
| 203 |
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
| 204 |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
| 228 |
iCode = 0 |
iCode = 0 |
| 229 |
|
|
| 230 |
JFNKconverged = JFNKresidual.LT.JFNKtol |
JFNKconverged = JFNKresidual.LT.JFNKtol |
| 231 |
|
& .OR.JFNKresidual.EQ.0. _d 0 |
| 232 |
|
|
| 233 |
C do Krylov loop only if convergence is not reached |
C do Krylov loop only if convergence is not reached |
| 234 |
|
|
| 238 |
|
|
| 239 |
krylovConverged = .FALSE. |
krylovConverged = .FALSE. |
| 240 |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
| 241 |
|
C map first guess sol; it is zero because the solution is a correction |
| 242 |
|
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid) |
| 243 |
|
C map rhs and change its sign because we are solving J*u = -F |
| 244 |
|
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,rhs,.TRUE.,myThid) |
| 245 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 246 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 247 |
|
DO j=1,nVec |
| 248 |
|
rhs(j,bi,bj) = - rhs(j,bi,bj) |
| 249 |
|
ENDDO |
| 250 |
|
ENDDO |
| 251 |
|
ENDDO |
| 252 |
DO WHILE ( .NOT.krylovConverged ) |
DO WHILE ( .NOT.krylovConverged ) |
| 253 |
C solution vector sol = du/vIce |
C solution vector sol = du/vIce |
| 254 |
C residual vector (rhs) Fu = u/vIceRes |
C residual vector (rhs) Fu = u/vIceRes |
| 255 |
C output work vectors wk1, -> input work vector wk2 |
C output work vectors wk1, -> input work vector wk2 |
| 256 |
|
|
| 257 |
CALL SEAICE_FGMRES_DRIVER( |
C map preconditioner results or Jacobian times vector, |
| 258 |
I uIceRes, vIceRes, |
C stored in du/vIce to wk2, for iCode=0, wk2 is set to zero, |
| 259 |
U duIce, dvIce, iCode, |
C because du/vIce = 0 |
| 260 |
I FGMRESeps, iOutFGMRES, |
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid) |
| 261 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
C |
| 262 |
|
CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter, |
| 263 |
|
U vv,w,wk1,wk2, |
| 264 |
|
I FGMRESeps,SEAICElinearIterMax,iOutFGMRES, |
| 265 |
|
U iCode, |
| 266 |
|
I myThid) |
| 267 |
|
C |
| 268 |
|
IF ( iCode .EQ. 0 ) THEN |
| 269 |
|
C map sol(ution) vector to du/vIce |
| 270 |
|
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid) |
| 271 |
|
ELSE |
| 272 |
|
C map work vector to du/vIce to either compute a preconditioner |
| 273 |
|
C solution (wk1=rhs) or a Jacobian times wk1 |
| 274 |
|
CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid) |
| 275 |
|
ENDIF |
| 276 |
|
C Fill overlaps in updated fields |
| 277 |
|
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
| 278 |
C FGMRES returns iCode either asking for an new preconditioned vector |
C FGMRES returns iCode either asking for an new preconditioned vector |
| 279 |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
| 280 |
C iteration |
C iteration |
| 281 |
IF (iCode.EQ.1) THEN |
IF (iCode.EQ.1) THEN |
| 282 |
C Call preconditioner |
C Call preconditioner |
| 283 |
IF ( SOLV_MAX_ITERS .GT. 0 ) |
IF ( SEAICEpreconLinIter .GT. 0 ) |
| 284 |
& CALL SEAICE_PRECONDITIONER( |
& CALL SEAICE_PRECONDITIONER( |
| 285 |
U duIce, dvIce, |
U duIce, dvIce, |
| 286 |
I zetaPre, etaPre, etaZpre, dwatPre, |
I zetaPre, etaPre, etaZpre, zetaZpre, dwatPre, |
| 287 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 288 |
ELSEIF (iCode.GE.2) THEN |
ELSEIF (iCode.GE.2) THEN |
| 289 |
C Compute Jacobian times vector |
C Compute Jacobian times vector |
| 300 |
IF ( debugLevel.GE.debLevA ) THEN |
IF ( debugLevel.GE.debLevA ) THEN |
| 301 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 302 |
totalNewtonItersLoc = |
totalNewtonItersLoc = |
| 303 |
& SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter |
& SEAICEnonLinIterMax*(myIter-nIter0)+newtonIter |
| 304 |
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
| 305 |
& ' S/R SEAICE_JFNK: Newton iterate / total, ', |
& ' S/R SEAICE_JFNK: Newton iterate / total, ', |
| 306 |
& 'JFNKgamma_lin, initial norm = ', |
& 'JFNKgamma_lin, initial norm = ', |
| 316 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 317 |
_END_MASTER( myThid ) |
_END_MASTER( myThid ) |
| 318 |
ENDIF |
ENDIF |
| 319 |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
IF ( krylovIter.EQ.SEAICElinearIterMax ) THEN |
| 320 |
krylovFails = krylovFails + 1 |
krylovFails = krylovFails + 1 |
| 321 |
ENDIF |
ENDIF |
| 322 |
C Set the stopping criterion for the Newton iteration and the |
C Set the stopping criterion for the Newton iteration and the |
| 323 |
C criterion for the transition from accurate to approximate FGMRES |
C criterion for the transition from accurate to approximate FGMRES |
| 324 |
IF ( newtonIter .EQ. 1 ) THEN |
IF ( newtonIter .EQ. 1 ) THEN |
| 325 |
JFNKtol=JFNKgamma_nonlin*JFNKresidual |
JFNKtol=SEAICEnonLinTol*JFNKresidual |
| 326 |
IF ( JFNKres_tFac .NE. UNSET_RL ) |
IF ( JFNKres_tFac .NE. UNSET_RL ) |
| 327 |
& JFNKres_t = JFNKresidual * JFNKres_tFac |
& JFNKres_t = JFNKresidual * JFNKres_tFac |
| 328 |
ENDIF |
ENDIF |
| 361 |
totalKrylovIters = totalKrylovIters + totalKrylovItersLoc |
totalKrylovIters = totalKrylovIters + totalKrylovItersLoc |
| 362 |
C Record failure |
C Record failure |
| 363 |
totalKrylovFails = totalKrylovFails + krylovFails |
totalKrylovFails = totalKrylovFails + krylovFails |
| 364 |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN |
| 365 |
totalNewtonFails = totalNewtonFails + 1 |
totalNewtonFails = totalNewtonFails + 1 |
| 366 |
ENDIF |
ENDIF |
| 367 |
ENDIF |
ENDIF |
| 435 |
|
|
| 436 |
C Print more debugging information |
C Print more debugging information |
| 437 |
IF ( debugLevel.GE.debLevA ) THEN |
IF ( debugLevel.GE.debLevA ) THEN |
| 438 |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
IF ( newtonIter .EQ. SEAICEnonLinIterMax ) THEN |
| 439 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 440 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 441 |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |