| 78 |
_RL phi_e, alp_e, JFNKgamma_lin |
_RL phi_e, alp_e, JFNKgamma_lin |
| 79 |
_RL FGMRESeps |
_RL FGMRESeps |
| 80 |
_RL JFNKtol |
_RL JFNKtol |
| 81 |
C |
|
| 82 |
_RL recip_deltaT |
_RL recip_deltaT |
| 83 |
LOGICAL JFNKconverged, krylovConverged |
LOGICAL JFNKconverged, krylovConverged |
| 84 |
LOGICAL writeNow |
LOGICAL writeNow |
| 85 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
| 86 |
C |
|
| 87 |
C u/vIceRes :: residual of sea-ice momentum equations |
C u/vIceRes :: residual of sea-ice momentum equations |
| 88 |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 89 |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
|
C vector version of the residuals |
|
|
_RL resTmp (nVec,1,nSx,nSy) |
|
| 90 |
C du/vIce :: ice velocity increment to be added to u/vIce |
C du/vIce :: ice velocity increment to be added to u/vIce |
| 91 |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 92 |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 93 |
C precomputed (= constant per Newton iteration) versions of |
C precomputed (= constant per Newton iteration) versions of |
| 94 |
C zeta, eta, and DWATN, press |
C zeta, eta, and DWATN, press |
| 95 |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 96 |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 115 |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
| 116 |
& iOutFGMRES=1 |
& iOutFGMRES=1 |
| 117 |
|
|
|
C |
|
| 118 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
| 119 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 120 |
DO J=1-Oly,sNy+Oly |
DO J=1-OLy,sNy+OLy |
| 121 |
DO I=1-Olx,sNx+Olx |
DO I=1-OLx,sNx+OLx |
| 122 |
uIceRes(I,J,bi,bj) = 0. _d 0 |
uIceRes(I,J,bi,bj) = 0. _d 0 |
| 123 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
vIceRes(I,J,bi,bj) = 0. _d 0 |
| 124 |
duIce (I,J,bi,bj) = 0. _d 0 |
duIce (I,J,bi,bj) = 0. _d 0 |
| 128 |
ENDDO |
ENDDO |
| 129 |
ENDDO |
ENDDO |
| 130 |
C Compute things that do no change during the Newton iteration: |
C Compute things that do no change during the Newton iteration: |
| 131 |
C sea-surface tilt and wind stress: |
C sea-surface tilt and wind stress: |
| 132 |
C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT |
C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT |
| 133 |
DO J=1-Oly,sNy+Oly |
DO J=1-OLy,sNy+OLy |
| 134 |
DO I=1-Olx,sNx+Olx |
DO I=1-OLx,sNx+OLx |
| 135 |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
| 136 |
& + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT |
& + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT |
| 137 |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
| 138 |
& + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT |
& + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT |
| 139 |
ENDDO |
ENDDO |
| 140 |
ENDDO |
ENDDO |
| 141 |
ENDDO |
ENDDO |
| 146 |
newtonIter = newtonIter + 1 |
newtonIter = newtonIter + 1 |
| 147 |
C Compute initial residual F(u), (includes computation of global |
C Compute initial residual F(u), (includes computation of global |
| 148 |
C variables DWATN, zeta, and eta) |
C variables DWATN, zeta, and eta) |
| 149 |
IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( |
IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE( |
| 150 |
I duIce, dvIce, |
I duIce, dvIce, |
| 151 |
U uIce, vIce, JFNKresidual, |
U uIce, vIce, JFNKresidual, |
| 152 |
O uIceRes, vIceRes, |
O uIceRes, vIceRes, |
| 153 |
I newtonIter, myTime, myIter, myThid ) |
I newtonIter, myTime, myIter, myThid ) |
| 155 |
C constant for the preconditioner |
C constant for the preconditioner |
| 156 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
| 157 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 158 |
DO j=1-Oly,sNy+Oly |
DO j=1-OLy,sNy+OLy |
| 159 |
DO i=1-Olx,sNx+Olx |
DO i=1-OLx,sNx+OLx |
| 160 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
| 161 |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
| 162 |
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
| 167 |
ENDDO |
ENDDO |
| 168 |
C compute convergence criterion for linear preconditioned FGMRES |
C compute convergence criterion for linear preconditioned FGMRES |
| 169 |
JFNKgamma_lin = JFNKgamma_lin_max |
JFNKgamma_lin = JFNKgamma_lin_max |
| 170 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.100 |
IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter |
| 171 |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
| 172 |
C Eisenstat, 1996, equ.(2.6) |
C Eisenstat, 1996, equ.(2.6) |
| 173 |
phi_e = 1. _d 0 |
phi_e = 1. _d 0 |
| 174 |
alp_e = 1. _d 0 |
alp_e = 1. _d 0 |
| 175 |
JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e |
JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e |
| 178 |
ENDIF |
ENDIF |
| 179 |
C save the residual for the next iteration |
C save the residual for the next iteration |
| 180 |
JFNKresidualKm1 = JFNKresidual |
JFNKresidualKm1 = JFNKresidual |
| 181 |
C |
|
| 182 |
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
| 183 |
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
| 184 |
C down. |
C down. |
| 186 |
C in that routine |
C in that routine |
| 187 |
krylovIter = 0 |
krylovIter = 0 |
| 188 |
iCode = 0 |
iCode = 0 |
| 189 |
C |
|
| 190 |
JFNKconverged = JFNKresidual.LT.JFNKtol |
JFNKconverged = JFNKresidual.LT.JFNKtol |
| 191 |
C |
|
| 192 |
C do Krylov loop only if convergence is not reached |
C do Krylov loop only if convergence is not reached |
| 193 |
C |
|
| 194 |
IF ( .NOT.JFNKconverged ) THEN |
IF ( .NOT.JFNKconverged ) THEN |
| 195 |
C |
|
| 196 |
C start Krylov iteration (FGMRES) |
C start Krylov iteration (FGMRES) |
| 197 |
C |
|
| 198 |
krylovConverged = .FALSE. |
krylovConverged = .FALSE. |
| 199 |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
FGMRESeps = JFNKgamma_lin * JFNKresidual |
| 200 |
DO WHILE ( .NOT.krylovConverged ) |
DO WHILE ( .NOT.krylovConverged ) |
| 201 |
C solution vector sol = du/vIce |
C solution vector sol = du/vIce |
| 202 |
C residual vector (rhs) Fu = u/vIceRes |
C residual vector (rhs) Fu = u/vIceRes |
| 203 |
C output work vectors wk1, -> input work vector wk2 |
C output work vectors wk1, -> input work vector wk2 |
| 204 |
C |
|
| 205 |
CALL SEAICE_FGMRES_DRIVER( |
CALL SEAICE_FGMRES_DRIVER( |
| 206 |
I uIceRes, vIceRes, |
I uIceRes, vIceRes, |
| 207 |
U duIce, dvIce, iCode, |
U duIce, dvIce, iCode, |
| 208 |
I FGMRESeps, iOutFGMRES, |
I FGMRESeps, iOutFGMRES, |
| 209 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 211 |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
| 212 |
C iteration |
C iteration |
| 213 |
IF (iCode.EQ.1) THEN |
IF (iCode.EQ.1) THEN |
| 214 |
C Call preconditioner |
C Call preconditioner |
| 215 |
IF ( SOLV_MAX_ITERS .GT. 0 ) |
IF ( SOLV_MAX_ITERS .GT. 0 ) |
| 216 |
& CALL SEAICE_PRECONDITIONER( |
& CALL SEAICE_PRECONDITIONER( |
| 217 |
U duIce, dvIce, |
U duIce, dvIce, |
| 218 |
I zetaPre, etaPre, etaZpre, dwatPre, |
I zetaPre, etaPre, etaZpre, dwatPre, |
| 219 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 220 |
ELSEIF (iCode.GE.2) THEN |
ELSEIF (iCode.GE.2) THEN |
| 221 |
C Compute Jacobian times vector |
C Compute Jacobian times vector |
| 222 |
CALL SEAICE_JACVEC( |
CALL SEAICE_JACVEC( |
| 223 |
I uIce, vIce, uIceRes, vIceRes, |
I uIce, vIce, uIceRes, vIceRes, |
| 224 |
U duIce, dvIce, |
U duIce, dvIce, |
| 225 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
| 226 |
ENDIF |
ENDIF |
| 227 |
krylovConverged = iCode.EQ.0 |
krylovConverged = iCode.EQ.0 |
| 231 |
C some output diagnostics |
C some output diagnostics |
| 232 |
IF ( debugLevel.GE.debLevA ) THEN |
IF ( debugLevel.GE.debLevA ) THEN |
| 233 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 234 |
totalNewtonItersLoc = |
totalNewtonItersLoc = |
| 235 |
& SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter |
& SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter |
| 236 |
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
| 237 |
& ' S/R SEAICE_JFNK: Newton iterate / total, ', |
& ' S/R SEAICE_JFNK: Newton iterate / total, ', |
| 238 |
& 'JFNKgamma_lin, initial norm = ', |
& 'JFNKgamma_lin, initial norm = ', |
| 239 |
& newtonIter, totalNewtonItersLoc, |
& newtonIter, totalNewtonItersLoc, |
| 241 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 242 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 243 |
WRITE(msgBuf,'(3(A,I6))') |
WRITE(msgBuf,'(3(A,I6))') |
| 244 |
& ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, |
& ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, |
| 245 |
& ' / ', totalNewtonItersLoc, |
& ' / ', totalNewtonItersLoc, |
| 246 |
& ', Nb. of FGMRES iterations = ', krylovIter |
& ', Nb. of FGMRES iterations = ', krylovIter |
| 247 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 251 |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
| 252 |
krylovFails = krylovFails + 1 |
krylovFails = krylovFails + 1 |
| 253 |
ENDIF |
ENDIF |
| 254 |
C Set the stopping criterion for the Newton iteration |
C Set the stopping criterion for the Newton iteration and the |
| 255 |
IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual |
C criterion for the transition from accurate to approximate FGMRES |
| 256 |
|
IF ( newtonIter .EQ. 1 ) THEN |
| 257 |
|
JFNKtol=JFNKgamma_nonlin*JFNKresidual |
| 258 |
|
IF ( JFNKres_tFac .NE. UNSET_RL ) |
| 259 |
|
& JFNKres_t = JFNKresidual * JFNKres_tFac |
| 260 |
|
ENDIF |
| 261 |
C Update linear solution vector and return to Newton iteration |
C Update linear solution vector and return to Newton iteration |
| 262 |
C Do a linesearch if necessary, and compute a new residual. |
C Do a linesearch if necessary, and compute a new residual. |
| 263 |
C Note that it should be possible to do the following operations |
C Note that it should be possible to do the following operations |
| 264 |
C at the beginning of the Newton iteration, thereby saving us from |
C at the beginning of the Newton iteration, thereby saving us from |
| 265 |
C the extra call of seaice_jfnk_update, but unfortunately that |
C the extra call of seaice_jfnk_update, but unfortunately that |
| 266 |
C changes the results, so we leave the stuff here for now. |
C changes the results, so we leave the stuff here for now. |
| 267 |
CALL SEAICE_JFNK_UPDATE( |
CALL SEAICE_JFNK_UPDATE( |
| 268 |
I duIce, dvIce, |
I duIce, dvIce, |
| 269 |
U uIce, vIce, JFNKresidual, |
U uIce, vIce, JFNKresidual, |
| 270 |
O uIceRes, vIceRes, |
O uIceRes, vIceRes, |
| 271 |
I newtonIter, myTime, myIter, myThid ) |
I newtonIter, myTime, myIter, myThid ) |
| 272 |
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
| 273 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
| 274 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 275 |
DO J=1-Oly,sNy+Oly |
DO J=1-OLy,sNy+OLy |
| 276 |
DO I=1-Olx,sNx+Olx |
DO I=1-OLx,sNx+OLx |
| 277 |
duIce(I,J,bi,bj)= 0. _d 0 |
duIce(I,J,bi,bj)= 0. _d 0 |
| 278 |
dvIce(I,J,bi,bj)= 0. _d 0 |
dvIce(I,J,bi,bj)= 0. _d 0 |
| 279 |
ENDDO |
ENDDO |
| 283 |
ENDIF |
ENDIF |
| 284 |
C end of Newton iterate |
C end of Newton iterate |
| 285 |
ENDDO |
ENDDO |
| 286 |
C |
|
| 287 |
C-- Output diagnostics |
C-- Output diagnostics |
| 288 |
C |
|
| 289 |
IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN |
IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN |
| 290 |
C Count iterations |
C Count iterations |
| 291 |
totalJFNKtimeSteps = totalJFNKtimeSteps + 1 |
totalJFNKtimeSteps = totalJFNKtimeSteps + 1 |
| 294 |
C Record failure |
C Record failure |
| 295 |
totalKrylovFails = totalKrylovFails + krylovFails |
totalKrylovFails = totalKrylovFails + krylovFails |
| 296 |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
| 297 |
totalNewtonFails = totalNewtonFails + 1 |
totalNewtonFails = totalNewtonFails + 1 |
| 298 |
ENDIF |
ENDIF |
| 299 |
ENDIF |
ENDIF |
| 300 |
C Decide whether it is time to dump and reset the counter |
C Decide whether it is time to dump and reset the counter |
| 301 |
writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, |
writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, |
| 302 |
& myTime+deltaTClock, deltaTClock) |
& myTime+deltaTClock, deltaTClock) |
| 303 |
#ifdef ALLOW_CAL |
#ifdef ALLOW_CAL |
| 304 |
IF ( useCAL ) THEN |
IF ( useCAL ) THEN |
| 305 |
CALL CAL_TIME2DUMP( |
CALL CAL_TIME2DUMP( |
| 306 |
I zeroRL, SEAICE_monFreq, deltaTClock, |
I zeroRL, SEAICE_monFreq, deltaTClock, |
| 307 |
U writeNow, |
U writeNow, |
| 308 |
I myTime+deltaTclock, myIter+1, myThid ) |
I myTime+deltaTclock, myIter+1, myThid ) |
| 310 |
#endif |
#endif |
| 311 |
IF ( writeNow ) THEN |
IF ( writeNow ) THEN |
| 312 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 313 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
| 314 |
&' // =======================================================' |
&' // =======================================================' |
| 315 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 316 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 317 |
WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' |
WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' |
| 318 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 319 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 320 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
| 321 |
&' // =======================================================' |
&' // =======================================================' |
| 322 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 323 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 324 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 325 |
& ' %JFNK_MON: time step = ', myIter+1 |
& ' %JFNK_MON: time step = ', myIter+1 |
| 326 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 327 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 328 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 329 |
& ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps |
& ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps |
| 330 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 331 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 332 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 333 |
& ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters |
& ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters |
| 334 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 335 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 336 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 337 |
& ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters |
& ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters |
| 338 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 339 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 340 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 341 |
& ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails |
& ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails |
| 342 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 343 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 344 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 345 |
& ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails |
& ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails |
| 346 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 347 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 348 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
| 349 |
&' // =======================================================' |
&' // =======================================================' |
| 350 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 351 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 352 |
WRITE(msgBuf,'(A)') ' // End JFNK statistics' |
WRITE(msgBuf,'(A)') ' // End JFNK statistics' |
| 353 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 354 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 355 |
WRITE(msgBuf,'(A)') |
WRITE(msgBuf,'(A)') |
| 356 |
&' // =======================================================' |
&' // =======================================================' |
| 357 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 358 |
& SQUEEZE_RIGHT, myThid ) |
& SQUEEZE_RIGHT, myThid ) |
| 369 |
IF ( debugLevel.GE.debLevA ) THEN |
IF ( debugLevel.GE.debLevA ) THEN |
| 370 |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
| 371 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 372 |
WRITE(msgBuf,'(A,I10)') |
WRITE(msgBuf,'(A,I10)') |
| 373 |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
| 374 |
& myIter+1 |
& myIter+1 |
| 375 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 378 |
ENDIF |
ENDIF |
| 379 |
IF ( krylovFails .GT. 0 ) THEN |
IF ( krylovFails .GT. 0 ) THEN |
| 380 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 381 |
WRITE(msgBuf,'(A,I4,A,I10)') |
WRITE(msgBuf,'(A,I4,A,I10)') |
| 382 |
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
| 383 |
& krylovFails, ' times in timestep ', myIter+1 |
& krylovFails, ' times in timestep ', myIter+1 |
| 384 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 386 |
_END_MASTER( myThid ) |
_END_MASTER( myThid ) |
| 387 |
ENDIF |
ENDIF |
| 388 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 389 |
WRITE(msgBuf,'(A,I6,A,I10)') |
WRITE(msgBuf,'(A,I6,A,I10)') |
| 390 |
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
| 391 |
& totalKrylovItersLoc, ' in timestep ', myIter+1 |
& totalKrylovItersLoc, ' in timestep ', myIter+1 |
| 392 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
| 402 |
C !ROUTINE: SEAICE_JFNK_UPDATE |
C !ROUTINE: SEAICE_JFNK_UPDATE |
| 403 |
C !INTERFACE: |
C !INTERFACE: |
| 404 |
|
|
| 405 |
SUBROUTINE SEAICE_JFNK_UPDATE( |
SUBROUTINE SEAICE_JFNK_UPDATE( |
| 406 |
I duIce, dvIce, |
I duIce, dvIce, |
| 407 |
U uIce, vIce, JFNKresidual, |
U uIce, vIce, JFNKresidual, |
| 408 |
O uIceRes, vIceRes, |
O uIceRes, vIceRes, |
| 409 |
I newtonIter, myTime, myIter, myThid ) |
I newtonIter, myTime, myIter, myThid ) |
| 462 |
_RL resLoc, facLS |
_RL resLoc, facLS |
| 463 |
LOGICAL doLineSearch |
LOGICAL doLineSearch |
| 464 |
C nVec :: size of the input vector(s) |
C nVec :: size of the input vector(s) |
| 465 |
C vector version of the residuals |
C resTmp :: vector version of the residuals |
| 466 |
INTEGER nVec |
INTEGER nVec |
| 467 |
PARAMETER ( nVec = 2*sNx*sNy ) |
PARAMETER ( nVec = 2*sNx*sNy ) |
| 468 |
_RL resTmp (nVec,1,nSx,nSy) |
_RL resTmp (nVec,1,nSx,nSy) |
| 469 |
C |
|
| 470 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
| 471 |
CEOP |
CEOP |
| 472 |
|
|
| 476 |
facLS = 1. _d 0 |
facLS = 1. _d 0 |
| 477 |
doLineSearch = .TRUE. |
doLineSearch = .TRUE. |
| 478 |
DO WHILE ( doLineSearch ) |
DO WHILE ( doLineSearch ) |
|
C Determine, if we need more iterations |
|
|
doLineSearch = resLoc .GE. JFNKresidual |
|
|
C Limit the maximum number of iterations arbitrarily to four |
|
|
doLineSearch = doLineSearch .AND. l .LE. 4 |
|
|
C For the first iteration du/vIce = 0 and there will be no |
|
|
C improvement of the residual possible, so we do only the first |
|
|
C iteration |
|
|
IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. |
|
|
C Only start a linesearch after some Newton iterations |
|
|
IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. |
|
|
C Increment counter |
|
|
l = l + 1 |
|
| 479 |
C Create update |
C Create update |
| 480 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
| 481 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 482 |
DO J=1-Oly,sNy+Oly |
DO J=1-OLy,sNy+OLy |
| 483 |
DO I=1-Olx,sNx+Olx |
DO I=1-OLx,sNx+OLx |
| 484 |
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) |
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj) |
| 485 |
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) |
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj) |
| 486 |
ENDDO |
ENDDO |
| 489 |
ENDDO |
ENDDO |
| 490 |
C Compute current residual F(u), (includes re-computation of global |
C Compute current residual F(u), (includes re-computation of global |
| 491 |
C variables DWATN, zeta, and eta, i.e. they are different after this) |
C variables DWATN, zeta, and eta, i.e. they are different after this) |
| 492 |
CALL SEAICE_CALC_RESIDUAL( |
CALL SEAICE_CALC_RESIDUAL( |
| 493 |
I uIce, vIce, |
I uIce, vIce, |
| 494 |
O uIceRes, vIceRes, |
O uIceRes, vIceRes, |
| 495 |
I newtonIter, 0, myTime, myIter, myThid ) |
I newtonIter, 0, myTime, myIter, myThid ) |
| 496 |
C Important: Compute the norm of the residual using the same scalar |
C Important: Compute the norm of the residual using the same scalar |
| 497 |
C product that SEAICE_FGMRES does |
C product that SEAICE_FGMRES does |
| 498 |
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
| 499 |
CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) |
CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid) |
| 500 |
resLoc = SQRT(resLoc) |
resLoc = SQRT(resLoc) |
| 501 |
|
C Determine, if we need more iterations |
| 502 |
|
doLineSearch = resLoc .GE. JFNKresidual |
| 503 |
|
C Limit the maximum number of iterations arbitrarily to four |
| 504 |
|
doLineSearch = doLineSearch .AND. l .LT. 4 |
| 505 |
|
C For the first iteration du/vIce = 0 and there will be no |
| 506 |
|
C improvement of the residual possible, so we do only the first |
| 507 |
|
C iteration |
| 508 |
|
IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE. |
| 509 |
|
C Only start a linesearch after some Newton iterations |
| 510 |
|
IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE. |
| 511 |
|
C Increment counter |
| 512 |
|
l = l + 1 |
| 513 |
C some output diagnostics |
C some output diagnostics |
| 514 |
IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN |
IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN |
| 515 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
| 516 |
WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') |
WRITE(msgBuf,'(2A,2(1XI6),3E12.5)') |
| 517 |
& ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', |
& ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ', |
| 518 |
& 'facLS, JFNKresidual, resLoc = ', |
& 'facLS, JFNKresidual, resLoc = ', |
| 519 |
& newtonIter, l, facLS, JFNKresidual, resLoc |
& newtonIter, l, facLS, JFNKresidual, resLoc |