/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download)
Mon Nov 12 09:46:38 2012 UTC (12 years, 8 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint64a
Changes since 1.8: +13 -3 lines
add calendar dump capability for the JFNK counters

1 mlosch 1.9 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.8 2012/11/09 14:11:43 mlosch Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5    
6     CBOP
7     C !ROUTINE: SEAICE_JFNK
8     C !INTERFACE:
9     SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
10    
11     C !DESCRIPTION: \bv
12     C *==========================================================*
13     C | SUBROUTINE SEAICE_JFKF
14     C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
15     C | following J.-F. Lemieux et al. Improving the numerical
16     C | convergence of viscous-plastic sea ice models with the
17     C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
18     C | 2840-2852 (2010).
19     C | o The logic follows JFs code.
20     C *==========================================================*
21     C | written by Martin Losch, Oct 2012
22     C *==========================================================*
23     C \ev
24    
25     C !USES:
26     IMPLICIT NONE
27    
28     C === Global variables ===
29     #include "SIZE.h"
30     #include "EEPARAMS.h"
31     #include "PARAMS.h"
32     #include "DYNVARS.h"
33     #include "GRID.h"
34     #include "SEAICE_SIZE.h"
35     #include "SEAICE_PARAMS.h"
36     #include "SEAICE.h"
37    
38     #ifdef ALLOW_AUTODIFF_TAMC
39     # include "tamc.h"
40     #endif
41    
42     C !INPUT/OUTPUT PARAMETERS:
43     C === Routine arguments ===
44     C myTime :: Simulation time
45     C myIter :: Simulation timestep number
46     C myThid :: my Thread Id. number
47     _RL myTime
48     INTEGER myIter
49     INTEGER myThid
50    
51     #if ( (defined SEAICE_CGRID) && \
52     (defined SEAICE_ALLOW_JFNK) && \
53     (defined SEAICE_ALLOW_DYNAMICS) )
54 mlosch 1.5 C !FUNCTIONS:
55     LOGICAL DIFFERENT_MULTIPLE
56     EXTERNAL DIFFERENT_MULTIPLE
57 mlosch 1.1
58     C i,j,bi,bj :: loop indices
59     INTEGER i,j,bi,bj
60     C loop indices
61 mlosch 1.5 INTEGER newtonIter
62     INTEGER krylovIter, krylovFails
63     INTEGER totalKrylovItersLoc
64     C FGMRES flag that determines amount of output messages of fgmres
65     INTEGER iOutFGMRES
66     C FGMRES flag that indicates what fgmres wants us to do next
67 mlosch 1.1 INTEGER iCode
68     _RL JFNKresidual, JFNKresidualTile(nSx,nSy)
69     _RL JFNKresidualKm1
70     C parameters to compute convergence criterion
71     _RL phi_e, alp_e, JFNKgamma_lin
72     _RL FGMRESeps
73     _RL JFNKtol
74     C
75     _RL recip_deltaT
76     LOGICAL JFNKconverged, krylovConverged
77 mlosch 1.9 LOGICAL writeNow
78 mlosch 1.1 CHARACTER*(MAX_LEN_MBUF) msgBuf
79     C
80     C u/vIceRes :: residual of sea-ice momentum equations
81     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
82     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
83     C du/vIce :: ice velocity increment to be added to u/vIce
84     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
85     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
86     C precomputed (= constant per Newton iteration) versions of
87 mlosch 1.2 C zeta, eta, and DWATN, press
88     _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
89     _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
90 mlosch 1.8 _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
91 mlosch 1.2 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
92     _RL pressPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
93 mlosch 1.1 CEOP
94    
95     C Initialise
96 mlosch 1.5 newtonIter = 0
97     krylovFails = 0
98     totalKrylovItersLoc = 0
99     JFNKconverged = .FALSE.
100     JFNKtol = 0. _d 0
101     JFNKresidual = 0. _d 0
102     JFNKresidualKm1 = 0. _d 0
103     FGMRESeps = 0. _d 0
104     recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
105    
106     iOutFGMRES=0
107     C iOutFgmres=1 gives a little bit of output
108     IF ( debugLevel.GE.debLevA .AND.
109     & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
110     & iOutFGMRES=1
111    
112 mlosch 1.1 C
113     DO bj=myByLo(myThid),myByHi(myThid)
114     DO bi=myBxLo(myThid),myBxHi(myThid)
115     DO J=1-Oly,sNy+Oly
116     DO I=1-Olx,sNx+Olx
117     uIceRes(I,J,bi,bj) = 0. _d 0
118     vIceRes(I,J,bi,bj) = 0. _d 0
119     duIce (I,J,bi,bj) = 0. _d 0
120     dvIce (I,J,bi,bj) = 0. _d 0
121     uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
122     vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
123     ENDDO
124     ENDDO
125     C Compute things that do no change during the Newton iteration:
126     C sea-surface tilt and wind stress:
127     C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT
128     DO J=1-Oly,sNy+Oly
129     DO I=1-Olx,sNx+Olx
130     FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
131     & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT
132     FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
133     & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT
134     ENDDO
135     ENDDO
136     ENDDO
137     ENDDO
138     C Start nonlinear Newton iteration: outer loop iteration
139     DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.
140     & .NOT.JFNKconverged )
141     newtonIter = newtonIter + 1
142     C Compute initial residual F(u), (includes computation of global
143     C variables DWATN, zeta, and eta)
144     CALL SEAICE_CALC_RESIDUAL(
145     I uIce, vIce,
146     O uIceRes, vIceRes,
147     I newtonIter, 0, myTime, myIter, myThid )
148 mlosch 1.3 CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)
149 mlosch 1.1 C local copies of precomputed coefficients that are to stay
150     C constant for the preconditioner
151     DO bj=myByLo(myThid),myByHi(myThid)
152     DO bi=myBxLo(myThid),myBxHi(myThid)
153     DO j=1-Oly,sNy+Oly
154     DO i=1-Olx,sNx+Olx
155 mlosch 1.2 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
156     etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
157 mlosch 1.8 etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj)
158 mlosch 1.2 dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
159     pressPre(I,J,bi,bj) = press(I,J,bi,bj)
160 mlosch 1.1 ENDDO
161     ENDDO
162     ENDDO
163     ENDDO
164     C
165     DO bj=myByLo(myThid),myByHi(myThid)
166     DO bi=myBxLo(myThid),myBxHi(myThid)
167     JFNKresidualTile(bi,bj) = 0. _d 0
168     DO J=1,sNy
169     DO I=1,sNx
170     #ifdef CG2D_SINGLECPU_SUM
171     JFNKlocalBuf(I,J,bi,bj) =
172     #else
173     JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +
174     #endif
175     & uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +
176     & vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)
177     ENDDO
178     ENDDO
179     ENDDO
180     ENDDO
181     JFNKresidual = 0. _d 0
182     #ifdef CG2D_SINGLECPU_SUM
183     CALL GLOBAL_SUM_SINGLECPU_RL(
184     & JFNKlocalBuf,JFNKresidual, 0, 0, myThid)
185     #else
186     CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )
187     #endif
188     JFNKresidual = SQRT(JFNKresidual)
189     C compute convergence criterion for linear preconditioned FGMRES
190     JFNKgamma_lin = JFNKgamma_lin_max
191     IF ( newtonIter.GT.1.AND.newtonIter.LE.100
192     & .AND.JFNKresidual.LT.JFNKres_t ) THEN
193     C Eisenstat, 1996, equ.(2.6)
194     phi_e = 1. _d 0
195     alp_e = 1. _d 0
196     JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e
197     JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
198     JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
199     ENDIF
200     C save the residual for the next iteration
201     JFNKresidualKm1 = JFNKresidual
202     C
203     C The Krylov iteration using FGMRES, the preconditioner is LSOR
204     C for now. The code is adapted from SEAICE_LSR, but heavily stripped
205     C down.
206     C krylovIter is mapped into "its" in seaice_fgmres and is incremented
207     C in that routine
208     krylovIter = 0
209     iCode = 0
210     IF ( debugLevel.GE.debLevA ) THEN
211 mlosch 1.5 _BEGIN_MASTER( myThid )
212 mlosch 1.1 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
213     & ' S/R SEAICE_JFNK: newtonIter,',
214     & ' total newtonIter, JFNKgamma_lin, initial norm = ',
215 mlosch 1.3 & newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
216 mlosch 1.1 & JFNKgamma_lin, JFNKresidual
217     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
218     & SQUEEZE_RIGHT, myThid )
219 mlosch 1.5 _END_MASTER( myThid )
220 mlosch 1.1 ENDIF
221     C
222     JFNKconverged = JFNKresidual.LT.JFNKtol
223     C
224     C do Krylov loop only if convergence is not reached
225     C
226     IF ( .NOT.JFNKconverged ) THEN
227     C
228     C start Krylov iteration (FGMRES)
229     C
230     krylovConverged = .FALSE.
231     FGMRESeps = JFNKgamma_lin * JFNKresidual
232     DO WHILE ( .NOT.krylovConverged )
233     C solution vector sol = du/vIce
234     C residual vector (rhs) Fu = u/vIceRes
235     C output work vectors wk1, -> input work vector wk2
236     C
237     CALL SEAICE_FGMRES_DRIVER(
238     I uIceRes, vIceRes,
239     U duIce, dvIce, iCode,
240 mlosch 1.5 I FGMRESeps, iOutFGMRES,
241 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
242     C FGMRES returns iCode either asking for an new preconditioned vector
243     C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
244     C iteration
245     IF (iCode.EQ.1) THEN
246 mlosch 1.7 C Call preconditioner
247     IF ( SOLV_MAX_ITERS .GT. 0 )
248     & CALL SEAICE_PRECONDITIONER(
249 mlosch 1.1 U duIce, dvIce,
250 mlosch 1.8 I zetaPre, etaPre, etaZpre, dwatPre, pressPre,
251 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
252     ELSEIF (iCode.GE.2) THEN
253     C Compute Jacobian times vector
254     CALL SEAICE_JACVEC(
255     I uIce, vIce, uIceRes, vIceRes,
256     U duIce, dvIce,
257     I newtonIter, krylovIter, myTime, myIter, myThid )
258     ENDIF
259     krylovConverged = iCode.EQ.0
260     C End of Krylov iterate
261     ENDDO
262 mlosch 1.5 totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
263 mlosch 1.1 C some output diagnostics
264     IF ( debugLevel.GE.debLevA ) THEN
265 mlosch 1.5 _BEGIN_MASTER( myThid )
266 mlosch 1.1 WRITE(msgBuf,'(3(A,I6))')
267     & ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,
268 mlosch 1.3 & ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
269 mlosch 1.1 & ', Nb. of FGMRES iterations = ', krylovIter
270     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
271     & SQUEEZE_RIGHT, myThid )
272 mlosch 1.5 _END_MASTER( myThid )
273 mlosch 1.1 ENDIF
274     IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
275 mlosch 1.5 krylovFails = krylovFails + 1
276 mlosch 1.1 ENDIF
277     C Update linear solution vector and return to Newton iteration
278     DO bj=myByLo(myThid),myByHi(myThid)
279     DO bi=myBxLo(myThid),myBxHi(myThid)
280     DO J=1-Oly,sNy+Oly
281     DO I=1-Olx,sNx+Olx
282     uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)
283     vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)
284 mlosch 1.4 C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
285     duIce(I,J,bi,bj)= 0. _d 0
286     dvIce(I,J,bi,bj)= 0. _d 0
287 mlosch 1.1 ENDDO
288     ENDDO
289     ENDDO
290     ENDDO
291     C Set the stopping criterion for the Newton iteration
292     IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual
293     ENDIF
294     C end of Newton iterate
295     ENDDO
296 mlosch 1.5 C
297     C-- Output diagnostics
298     C
299 mlosch 1.6 IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
300 mlosch 1.5 C Count iterations
301 mlosch 1.6 totalJFNKtimeSteps = totalJFNKtimeSteps + 1
302     totalNewtonIters = totalNewtonIters + newtonIter
303     totalKrylovIters = totalKrylovIters + totalKrylovItersLoc
304 mlosch 1.5 C Record failure
305 mlosch 1.6 totalKrylovFails = totalKrylovFails + krylovFails
306     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
307     totalNewtonFails = totalNewtonFails + 1
308     ENDIF
309 mlosch 1.5 ENDIF
310     C Decide whether it is time to dump and reset the counter
311 mlosch 1.9 writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
312     & myTime+deltaTClock, deltaTClock)
313     #ifdef ALLOW_CAL
314     IF ( useCAL ) THEN
315     CALL CAL_TIME2DUMP(
316     I zeroRL, SEAICE_monFreq, deltaTClock,
317     U writeNow,
318     I myTime+deltaTclock, myIter+1, myThid )
319     ENDIF
320     #endif
321     IF ( writeNow ) THEN
322 mlosch 1.5 _BEGIN_MASTER( myThid )
323     WRITE(msgBuf,'(A)')
324     &' // ======================================================='
325     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
326     & SQUEEZE_RIGHT, myThid )
327     WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
328     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
329     & SQUEEZE_RIGHT, myThid )
330     WRITE(msgBuf,'(A)')
331     &' // ======================================================='
332     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
333     & SQUEEZE_RIGHT, myThid )
334     WRITE(msgBuf,'(A,I10)')
335     & ' %JFNK_MON: time step = ', myIter+1
336     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
337     & SQUEEZE_RIGHT, myThid )
338     WRITE(msgBuf,'(A,I10)')
339     & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps
340     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
341     & SQUEEZE_RIGHT, myThid )
342     WRITE(msgBuf,'(A,I10)')
343     & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters
344     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
345     & SQUEEZE_RIGHT, myThid )
346     WRITE(msgBuf,'(A,I10)')
347     & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters
348     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
349     & SQUEEZE_RIGHT, myThid )
350     WRITE(msgBuf,'(A,I10)')
351     & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
352     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
353     & SQUEEZE_RIGHT, myThid )
354     WRITE(msgBuf,'(A,I10)')
355     & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
356     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
357     & SQUEEZE_RIGHT, myThid )
358     WRITE(msgBuf,'(A)')
359     &' // ======================================================='
360     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
361     & SQUEEZE_RIGHT, myThid )
362     WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
363     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
364     & SQUEEZE_RIGHT, myThid )
365     WRITE(msgBuf,'(A)')
366     &' // ======================================================='
367     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
368     & SQUEEZE_RIGHT, myThid )
369     _END_MASTER( myThid )
370     C reset and start again
371     totalJFNKtimeSteps = 0
372     totalNewtonIters = 0
373     totalKrylovIters = 0
374     totalKrylovFails = 0
375     totalNewtonFails = 0
376     ENDIF
377    
378     C Print more debugging information
379 mlosch 1.1 IF ( debugLevel.GE.debLevA ) THEN
380     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
381 mlosch 1.5 _BEGIN_MASTER( myThid )
382 mlosch 1.1 WRITE(msgBuf,'(A,I10)')
383     & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
384 mlosch 1.5 & myIter+1
385 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
386     & SQUEEZE_RIGHT, myThid )
387 mlosch 1.5 _END_MASTER( myThid )
388 mlosch 1.1 ENDIF
389 mlosch 1.5 IF ( krylovFails .GT. 0 ) THEN
390     _BEGIN_MASTER( myThid )
391 mlosch 1.1 WRITE(msgBuf,'(A,I4,A,I10)')
392     & ' S/R SEAICE_JFNK: FGMRES did not converge ',
393 mlosch 1.5 & krylovFails, ' times in timestep ', myIter+1
394 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
395     & SQUEEZE_RIGHT, myThid )
396 mlosch 1.5 _END_MASTER( myThid )
397 mlosch 1.1 ENDIF
398 mlosch 1.5 _BEGIN_MASTER( myThid )
399     WRITE(msgBuf,'(A,I6,A,I10)')
400 mlosch 1.1 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
401 mlosch 1.5 & totalKrylovItersLoc, ' in timestep ', myIter+1
402     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
403     & SQUEEZE_RIGHT, myThid )
404     _END_MASTER( myThid )
405 mlosch 1.1 ENDIF
406    
407     #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */
408    
409     RETURN
410     END

  ViewVC Help
Powered by ViewVC 1.1.22