/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.29 - (hide annotations) (download)
Wed Jan 27 14:03:34 2016 UTC (9 years, 5 months ago) by mlosch
Branch: MAIN
Changes since 1.28: +38 -8 lines
put content of S/R SEAICE_FGMRES_DRIVER into S/R SEAICE_JFKN

1 mlosch 1.29 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.28 2014/12/01 12:31:36 mlosch Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5 gforget 1.27 #ifdef ALLOW_AUTODIFF
6     # include "AUTODIFF_OPTIONS.h"
7     #endif
8 mlosch 1.1
9 mlosch 1.15 C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
10     C-- Contents
11     C-- o SEAICE_JFNK
12     C-- o SEAICE_JFNK_UPDATE
13    
14 mlosch 1.1 CBOP
15     C !ROUTINE: SEAICE_JFNK
16     C !INTERFACE:
17     SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
18    
19     C !DESCRIPTION: \bv
20     C *==========================================================*
21 mlosch 1.15 C | SUBROUTINE SEAICE_JFNK
22 mlosch 1.1 C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
23     C | following J.-F. Lemieux et al. Improving the numerical
24     C | convergence of viscous-plastic sea ice models with the
25     C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
26     C | 2840-2852 (2010).
27     C | o The logic follows JFs code.
28     C *==========================================================*
29     C | written by Martin Losch, Oct 2012
30     C *==========================================================*
31     C \ev
32    
33     C !USES:
34     IMPLICIT NONE
35    
36     C === Global variables ===
37     #include "SIZE.h"
38     #include "EEPARAMS.h"
39     #include "PARAMS.h"
40     #include "DYNVARS.h"
41     #include "GRID.h"
42     #include "SEAICE_SIZE.h"
43     #include "SEAICE_PARAMS.h"
44     #include "SEAICE.h"
45    
46     #ifdef ALLOW_AUTODIFF_TAMC
47     # include "tamc.h"
48     #endif
49    
50     C !INPUT/OUTPUT PARAMETERS:
51     C === Routine arguments ===
52     C myTime :: Simulation time
53     C myIter :: Simulation timestep number
54     C myThid :: my Thread Id. number
55     _RL myTime
56     INTEGER myIter
57     INTEGER myThid
58    
59 mlosch 1.21 #ifdef SEAICE_ALLOW_JFNK
60 mlosch 1.5 C !FUNCTIONS:
61     LOGICAL DIFFERENT_MULTIPLE
62     EXTERNAL DIFFERENT_MULTIPLE
63 mlosch 1.1
64 mlosch 1.16 C !LOCAL VARIABLES:
65     C === Local variables ===
66 mlosch 1.29 C i,j,k,bi,bj :: loop indices
67     INTEGER i,j,k,bi,bj
68 mlosch 1.1 C loop indices
69 mlosch 1.5 INTEGER newtonIter
70     INTEGER krylovIter, krylovFails
71 mlosch 1.13 INTEGER totalKrylovItersLoc, totalNewtonItersLoc
72 mlosch 1.29 C FGMRES parameters
73     C im :: size of Krylov space
74     C ifgmres :: interation counter
75     INTEGER im
76     PARAMETER ( im = 50 )
77     INTEGER ifgmres
78 mlosch 1.5 C FGMRES flag that determines amount of output messages of fgmres
79     INTEGER iOutFGMRES
80     C FGMRES flag that indicates what fgmres wants us to do next
81 mlosch 1.1 INTEGER iCode
82 mlosch 1.13 _RL JFNKresidual
83 mlosch 1.1 _RL JFNKresidualKm1
84     C parameters to compute convergence criterion
85 mlosch 1.22 _RL JFNKgamma_lin
86 mlosch 1.1 _RL FGMRESeps
87     _RL JFNKtol
88 mlosch 1.24 C backward differences extrapolation factors
89     _RL bdfFac, bdfAlpha
90 mlosch 1.23 C
91 mlosch 1.1 _RL recip_deltaT
92     LOGICAL JFNKconverged, krylovConverged
93 mlosch 1.9 LOGICAL writeNow
94 mlosch 1.1 CHARACTER*(MAX_LEN_MBUF) msgBuf
95 jmc 1.20
96 mlosch 1.1 C u/vIceRes :: residual of sea-ice momentum equations
97     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
98     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
99 mlosch 1.24 C extra time level required for backward difference time stepping
100 mlosch 1.23 _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
101     _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
102 mlosch 1.1 C du/vIce :: ice velocity increment to be added to u/vIce
103     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
104     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
105 jmc 1.20 C precomputed (= constant per Newton iteration) versions of
106 mlosch 1.2 C zeta, eta, and DWATN, press
107     _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
108 mlosch 1.28 _RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
109 mlosch 1.2 _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
110 mlosch 1.8 _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
111 mlosch 1.2 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
112 mlosch 1.29 C work arrays
113     _RL rhs(nVec,nSx,nSy), sol(nVec,nSx,nSy)
114     _RL vv(nVec,im+1,nSx,nSy), w(nVec,im,nSx,nSy)
115     _RL wk1(nVec,nSx,nSy), wk2(nVec,nSx,nSy)
116 mlosch 1.1 CEOP
117    
118     C Initialise
119 mlosch 1.5 newtonIter = 0
120     krylovFails = 0
121     totalKrylovItersLoc = 0
122     JFNKconverged = .FALSE.
123     JFNKtol = 0. _d 0
124     JFNKresidual = 0. _d 0
125     JFNKresidualKm1 = 0. _d 0
126     FGMRESeps = 0. _d 0
127     recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
128    
129     iOutFGMRES=0
130 mlosch 1.12 C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
131     IF ( debugLevel.GE.debLevC .AND.
132 mlosch 1.5 & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
133     & iOutFGMRES=1
134    
135 mlosch 1.24 C backward difference extrapolation factors
136     bdfFac = 0. _d 0
137     IF ( SEAICEuseBDF2 ) THEN
138     IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN
139     bdfFac = 0. _d 0
140 mlosch 1.23 ELSE
141 mlosch 1.24 bdfFac = 0.5 _d 0
142 mlosch 1.23 ENDIF
143     ENDIF
144 mlosch 1.24 bdfAlpha = 1. _d 0 + bdfFac
145 mlosch 1.23
146 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
147     DO bi=myBxLo(myThid),myBxHi(myThid)
148 jmc 1.20 DO J=1-OLy,sNy+OLy
149     DO I=1-OLx,sNx+OLx
150 mlosch 1.1 uIceRes(I,J,bi,bj) = 0. _d 0
151     vIceRes(I,J,bi,bj) = 0. _d 0
152     duIce (I,J,bi,bj) = 0. _d 0
153     dvIce (I,J,bi,bj) = 0. _d 0
154 mlosch 1.23 ENDDO
155     ENDDO
156     C cycle ice velocities
157     DO J=1-OLy,sNy+OLy
158     DO I=1-OLx,sNx+OLx
159 mlosch 1.24 duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha
160     & + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac
161     dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha
162     & + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac
163 mlosch 1.1 uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
164     vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
165     ENDDO
166     ENDDO
167 mlosch 1.26 C As long as IMEX is not properly implemented leave this commented out
168     CML IF ( .NOT.SEAICEuseIMEX ) THEN
169 mlosch 1.1 C Compute things that do no change during the Newton iteration:
170 jmc 1.20 C sea-surface tilt and wind stress:
171 mlosch 1.25 C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT
172 jmc 1.20 DO J=1-OLy,sNy+OLy
173     DO I=1-OLx,sNx+OLx
174 mlosch 1.1 FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
175 mlosch 1.23 & + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT
176 mlosch 1.1 FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
177 mlosch 1.23 & + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT
178 mlosch 1.1 ENDDO
179     ENDDO
180 mlosch 1.26 CML ENDIF
181 mlosch 1.1 ENDDO
182     ENDDO
183     C Start nonlinear Newton iteration: outer loop iteration
184     DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.
185     & .NOT.JFNKconverged )
186     newtonIter = newtonIter + 1
187     C Compute initial residual F(u), (includes computation of global
188     C variables DWATN, zeta, and eta)
189 jmc 1.20 IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
190     I duIce, dvIce,
191 mlosch 1.15 U uIce, vIce, JFNKresidual,
192     O uIceRes, vIceRes,
193     I newtonIter, myTime, myIter, myThid )
194 mlosch 1.1 C local copies of precomputed coefficients that are to stay
195     C constant for the preconditioner
196     DO bj=myByLo(myThid),myByHi(myThid)
197     DO bi=myBxLo(myThid),myBxHi(myThid)
198 jmc 1.20 DO j=1-OLy,sNy+OLy
199     DO i=1-OLx,sNx+OLx
200 mlosch 1.10 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
201 mlosch 1.28 zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj)
202 mlosch 1.10 etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
203     etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj)
204     dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
205 mlosch 1.1 ENDDO
206     ENDDO
207     ENDDO
208     ENDDO
209     C compute convergence criterion for linear preconditioned FGMRES
210     JFNKgamma_lin = JFNKgamma_lin_max
211 mlosch 1.18 IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
212 mlosch 1.1 & .AND.JFNKresidual.LT.JFNKres_t ) THEN
213 mlosch 1.22 C Eisenstat and Walker (1996), eq.(2.6)
214     JFNKgamma_lin = SEAICE_JFNKphi
215     & *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
216 mlosch 1.1 JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
217     JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
218     ENDIF
219     C save the residual for the next iteration
220     JFNKresidualKm1 = JFNKresidual
221 jmc 1.20
222 mlosch 1.1 C The Krylov iteration using FGMRES, the preconditioner is LSOR
223     C for now. The code is adapted from SEAICE_LSR, but heavily stripped
224     C down.
225     C krylovIter is mapped into "its" in seaice_fgmres and is incremented
226     C in that routine
227     krylovIter = 0
228     iCode = 0
229 jmc 1.20
230 mlosch 1.1 JFNKconverged = JFNKresidual.LT.JFNKtol
231 jmc 1.20
232 mlosch 1.1 C do Krylov loop only if convergence is not reached
233 jmc 1.20
234 mlosch 1.1 IF ( .NOT.JFNKconverged ) THEN
235 jmc 1.20
236 mlosch 1.1 C start Krylov iteration (FGMRES)
237 jmc 1.20
238 mlosch 1.1 krylovConverged = .FALSE.
239     FGMRESeps = JFNKgamma_lin * JFNKresidual
240 mlosch 1.29 C map first guess sol; it is zero because the solution is a correction
241     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.TRUE.,myThid)
242     C map rhs and change its sign because we are solving J*u = -F
243     CALL SEAICE_MAP2VEC(nVec,-uIceRes,-vIceRes,rhs,.TRUE.,myThid)
244 jmc 1.20 DO WHILE ( .NOT.krylovConverged )
245 mlosch 1.1 C solution vector sol = du/vIce
246     C residual vector (rhs) Fu = u/vIceRes
247 jmc 1.20 C output work vectors wk1, -> input work vector wk2
248    
249 mlosch 1.29 C map preconditioner results or Jacobian times vector,
250     C stored in du/vIce to wk2, for iCode=0, wk2 is set to zero,
251     C because du/vIce = 0
252     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk2,.TRUE.,myThid)
253     C
254     CALL SEAICE_FGMRES (nVec,im,rhs,sol,ifgmres,krylovIter,
255     U vv,w,wk1,wk2,
256     I FGMRESeps,SEAICEkrylovIterMax,iOutFGMRES,
257     U iCode,
258     I myThid)
259     C
260     IF ( iCode .EQ. 0 ) THEN
261     C map sol(ution) vector to du/vIce
262     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,sol,.FALSE.,myThid)
263     ELSE
264     C map work vector to du/vIce to either compute a preconditioner
265     C solution (wk1=rhs) or a Jacobian times wk1
266     CALL SEAICE_MAP2VEC(nVec,duIce,dvIce,wk1,.FALSE.,myThid)
267     ENDIF
268     C Fill overlaps in updated fields
269     CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid)
270 mlosch 1.1 C FGMRES returns iCode either asking for an new preconditioned vector
271     C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
272     C iteration
273     IF (iCode.EQ.1) THEN
274 jmc 1.20 C Call preconditioner
275 mlosch 1.7 IF ( SOLV_MAX_ITERS .GT. 0 )
276 jmc 1.20 & CALL SEAICE_PRECONDITIONER(
277     U duIce, dvIce,
278 mlosch 1.28 I zetaPre, etaPre, etaZpre, zetaZpre, dwatPre,
279 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
280     ELSEIF (iCode.GE.2) THEN
281     C Compute Jacobian times vector
282     CALL SEAICE_JACVEC(
283     I uIce, vIce, uIceRes, vIceRes,
284 jmc 1.20 U duIce, dvIce,
285 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
286     ENDIF
287     krylovConverged = iCode.EQ.0
288     C End of Krylov iterate
289     ENDDO
290 mlosch 1.5 totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
291 mlosch 1.1 C some output diagnostics
292     IF ( debugLevel.GE.debLevA ) THEN
293 mlosch 1.5 _BEGIN_MASTER( myThid )
294 jmc 1.20 totalNewtonItersLoc =
295 mlosch 1.13 & SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter
296 jmc 1.20 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
297 mlosch 1.13 & ' S/R SEAICE_JFNK: Newton iterate / total, ',
298     & 'JFNKgamma_lin, initial norm = ',
299     & newtonIter, totalNewtonItersLoc,
300     & JFNKgamma_lin,JFNKresidual
301     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
302     & SQUEEZE_RIGHT, myThid )
303 mlosch 1.1 WRITE(msgBuf,'(3(A,I6))')
304 jmc 1.20 & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
305 mlosch 1.13 & ' / ', totalNewtonItersLoc,
306 mlosch 1.1 & ', Nb. of FGMRES iterations = ', krylovIter
307     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
308     & SQUEEZE_RIGHT, myThid )
309 mlosch 1.5 _END_MASTER( myThid )
310 mlosch 1.1 ENDIF
311     IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
312 mlosch 1.5 krylovFails = krylovFails + 1
313 mlosch 1.1 ENDIF
314 mlosch 1.17 C Set the stopping criterion for the Newton iteration and the
315     C criterion for the transition from accurate to approximate FGMRES
316     IF ( newtonIter .EQ. 1 ) THEN
317     JFNKtol=JFNKgamma_nonlin*JFNKresidual
318     IF ( JFNKres_tFac .NE. UNSET_RL )
319     & JFNKres_t = JFNKresidual * JFNKres_tFac
320     ENDIF
321 mlosch 1.1 C Update linear solution vector and return to Newton iteration
322 mlosch 1.15 C Do a linesearch if necessary, and compute a new residual.
323     C Note that it should be possible to do the following operations
324     C at the beginning of the Newton iteration, thereby saving us from
325     C the extra call of seaice_jfnk_update, but unfortunately that
326     C changes the results, so we leave the stuff here for now.
327 jmc 1.20 CALL SEAICE_JFNK_UPDATE(
328     I duIce, dvIce,
329 mlosch 1.15 U uIce, vIce, JFNKresidual,
330     O uIceRes, vIceRes,
331     I newtonIter, myTime, myIter, myThid )
332     C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
333 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
334     DO bi=myBxLo(myThid),myBxHi(myThid)
335 jmc 1.20 DO J=1-OLy,sNy+OLy
336     DO I=1-OLx,sNx+OLx
337 mlosch 1.4 duIce(I,J,bi,bj)= 0. _d 0
338     dvIce(I,J,bi,bj)= 0. _d 0
339 mlosch 1.1 ENDDO
340     ENDDO
341     ENDDO
342     ENDDO
343     ENDIF
344     C end of Newton iterate
345     ENDDO
346 jmc 1.20
347 mlosch 1.5 C-- Output diagnostics
348 jmc 1.20
349 mlosch 1.6 IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
350 mlosch 1.5 C Count iterations
351 mlosch 1.6 totalJFNKtimeSteps = totalJFNKtimeSteps + 1
352     totalNewtonIters = totalNewtonIters + newtonIter
353     totalKrylovIters = totalKrylovIters + totalKrylovItersLoc
354 mlosch 1.5 C Record failure
355 mlosch 1.6 totalKrylovFails = totalKrylovFails + krylovFails
356     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
357 jmc 1.20 totalNewtonFails = totalNewtonFails + 1
358 mlosch 1.6 ENDIF
359 mlosch 1.5 ENDIF
360     C Decide whether it is time to dump and reset the counter
361 mlosch 1.9 writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
362 jmc 1.20 & myTime+deltaTClock, deltaTClock)
363 mlosch 1.9 #ifdef ALLOW_CAL
364     IF ( useCAL ) THEN
365 jmc 1.20 CALL CAL_TIME2DUMP(
366 mlosch 1.9 I zeroRL, SEAICE_monFreq, deltaTClock,
367     U writeNow,
368     I myTime+deltaTclock, myIter+1, myThid )
369     ENDIF
370     #endif
371     IF ( writeNow ) THEN
372 mlosch 1.5 _BEGIN_MASTER( myThid )
373 jmc 1.20 WRITE(msgBuf,'(A)')
374 mlosch 1.5 &' // ======================================================='
375     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
376     & SQUEEZE_RIGHT, myThid )
377     WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
378     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
379     & SQUEEZE_RIGHT, myThid )
380 jmc 1.20 WRITE(msgBuf,'(A)')
381 mlosch 1.5 &' // ======================================================='
382     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
383     & SQUEEZE_RIGHT, myThid )
384 jmc 1.20 WRITE(msgBuf,'(A,I10)')
385 mlosch 1.5 & ' %JFNK_MON: time step = ', myIter+1
386     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
387     & SQUEEZE_RIGHT, myThid )
388 jmc 1.20 WRITE(msgBuf,'(A,I10)')
389 mlosch 1.5 & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps
390     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
391     & SQUEEZE_RIGHT, myThid )
392 jmc 1.20 WRITE(msgBuf,'(A,I10)')
393 mlosch 1.5 & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters
394     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
395     & SQUEEZE_RIGHT, myThid )
396 jmc 1.20 WRITE(msgBuf,'(A,I10)')
397 mlosch 1.5 & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters
398     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
399     & SQUEEZE_RIGHT, myThid )
400 jmc 1.20 WRITE(msgBuf,'(A,I10)')
401 mlosch 1.5 & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
402     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
403     & SQUEEZE_RIGHT, myThid )
404 jmc 1.20 WRITE(msgBuf,'(A,I10)')
405 mlosch 1.5 & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
406     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
407     & SQUEEZE_RIGHT, myThid )
408 jmc 1.20 WRITE(msgBuf,'(A)')
409 mlosch 1.5 &' // ======================================================='
410     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
411     & SQUEEZE_RIGHT, myThid )
412 mlosch 1.11 WRITE(msgBuf,'(A)') ' // End JFNK statistics'
413 mlosch 1.5 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
414     & SQUEEZE_RIGHT, myThid )
415 jmc 1.20 WRITE(msgBuf,'(A)')
416 mlosch 1.5 &' // ======================================================='
417     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
418     & SQUEEZE_RIGHT, myThid )
419     _END_MASTER( myThid )
420     C reset and start again
421     totalJFNKtimeSteps = 0
422     totalNewtonIters = 0
423     totalKrylovIters = 0
424     totalKrylovFails = 0
425     totalNewtonFails = 0
426     ENDIF
427    
428     C Print more debugging information
429 mlosch 1.1 IF ( debugLevel.GE.debLevA ) THEN
430     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
431 mlosch 1.5 _BEGIN_MASTER( myThid )
432 jmc 1.20 WRITE(msgBuf,'(A,I10)')
433 mlosch 1.1 & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
434 mlosch 1.5 & myIter+1
435 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
436     & SQUEEZE_RIGHT, myThid )
437 mlosch 1.5 _END_MASTER( myThid )
438 mlosch 1.1 ENDIF
439 mlosch 1.5 IF ( krylovFails .GT. 0 ) THEN
440     _BEGIN_MASTER( myThid )
441 jmc 1.20 WRITE(msgBuf,'(A,I4,A,I10)')
442 mlosch 1.1 & ' S/R SEAICE_JFNK: FGMRES did not converge ',
443 mlosch 1.5 & krylovFails, ' times in timestep ', myIter+1
444 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
445     & SQUEEZE_RIGHT, myThid )
446 mlosch 1.5 _END_MASTER( myThid )
447 mlosch 1.1 ENDIF
448 mlosch 1.5 _BEGIN_MASTER( myThid )
449 jmc 1.20 WRITE(msgBuf,'(A,I6,A,I10)')
450 mlosch 1.1 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
451 mlosch 1.5 & totalKrylovItersLoc, ' in timestep ', myIter+1
452     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
453     & SQUEEZE_RIGHT, myThid )
454     _END_MASTER( myThid )
455 mlosch 1.1 ENDIF
456    
457 mlosch 1.15 RETURN
458     END
459    
460 mlosch 1.16 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
461 mlosch 1.15 CBOP
462     C !ROUTINE: SEAICE_JFNK_UPDATE
463     C !INTERFACE:
464    
465 jmc 1.20 SUBROUTINE SEAICE_JFNK_UPDATE(
466     I duIce, dvIce,
467 mlosch 1.15 U uIce, vIce, JFNKresidual,
468     O uIceRes, vIceRes,
469     I newtonIter, myTime, myIter, myThid )
470    
471     C !DESCRIPTION: \bv
472     C *==========================================================*
473     C | SUBROUTINE SEAICE_JFNK_UPDATE
474     C | o Update velocities with incremental solutions of FGMRES
475     C | o compute residual of updated solutions and do
476     C | o linesearch:
477     C | reduce update until residual is smaller than previous
478     C | one (input)
479     C *==========================================================*
480     C | written by Martin Losch, Jan 2013
481     C *==========================================================*
482     C \ev
483    
484     C !USES:
485     IMPLICIT NONE
486    
487     C === Global variables ===
488     #include "SIZE.h"
489     #include "EEPARAMS.h"
490     #include "PARAMS.h"
491     #include "SEAICE_SIZE.h"
492     #include "SEAICE_PARAMS.h"
493    
494     C !INPUT/OUTPUT PARAMETERS:
495     C === Routine arguments ===
496     C myTime :: Simulation time
497     C myIter :: Simulation timestep number
498     C myThid :: my Thread Id. number
499     C newtonIter :: current iterate of Newton iteration
500     _RL myTime
501     INTEGER myIter
502     INTEGER myThid
503     INTEGER newtonIter
504     C JFNKresidual :: Residual at the beginning of the FGMRES iteration,
505     C changes with newtonIter (updated)
506     _RL JFNKresidual
507     C du/vIce :: ice velocity increment to be added to u/vIce (input)
508     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
509     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
510     C u/vIce :: ice velocity increment to be added to u/vIce (updated)
511     _RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
512     _RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
513     C u/vIceRes :: residual of sea-ice momentum equations (output)
514     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
515     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
516    
517 mlosch 1.16 C !LOCAL VARIABLES:
518     C === Local variables ===
519 mlosch 1.15 C i,j,bi,bj :: loop indices
520     INTEGER i,j,bi,bj
521     INTEGER l
522     _RL resLoc, facLS
523     LOGICAL doLineSearch
524     C nVec :: size of the input vector(s)
525 jmc 1.20 C resTmp :: vector version of the residuals
526 mlosch 1.15 INTEGER nVec
527     PARAMETER ( nVec = 2*sNx*sNy )
528     _RL resTmp (nVec,1,nSx,nSy)
529 jmc 1.20
530 mlosch 1.15 CHARACTER*(MAX_LEN_MBUF) msgBuf
531     CEOP
532    
533     C Initialise some local variables
534     l = 0
535     resLoc = JFNKresidual
536     facLS = 1. _d 0
537     doLineSearch = .TRUE.
538     DO WHILE ( doLineSearch )
539     C Create update
540     DO bj=myByLo(myThid),myByHi(myThid)
541     DO bi=myBxLo(myThid),myBxHi(myThid)
542 jmc 1.20 DO J=1-OLy,sNy+OLy
543     DO I=1-OLx,sNx+OLx
544 mlosch 1.15 uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
545     vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
546     ENDDO
547     ENDDO
548     ENDDO
549     ENDDO
550     C Compute current residual F(u), (includes re-computation of global
551     C variables DWATN, zeta, and eta, i.e. they are different after this)
552 jmc 1.20 CALL SEAICE_CALC_RESIDUAL(
553     I uIce, vIce,
554     O uIceRes, vIceRes,
555 mlosch 1.15 I newtonIter, 0, myTime, myIter, myThid )
556     C Important: Compute the norm of the residual using the same scalar
557     C product that SEAICE_FGMRES does
558     CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
559     CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
560     resLoc = SQRT(resLoc)
561 mlosch 1.19 C Determine, if we need more iterations
562 jmc 1.20 doLineSearch = resLoc .GE. JFNKresidual
563 mlosch 1.19 C Limit the maximum number of iterations arbitrarily to four
564 jmc 1.20 doLineSearch = doLineSearch .AND. l .LT. 4
565 mlosch 1.19 C For the first iteration du/vIce = 0 and there will be no
566     C improvement of the residual possible, so we do only the first
567     C iteration
568     IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
569     C Only start a linesearch after some Newton iterations
570     IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
571     C Increment counter
572     l = l + 1
573 mlosch 1.15 C some output diagnostics
574     IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
575     _BEGIN_MASTER( myThid )
576 jmc 1.20 WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
577 mlosch 1.15 & ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
578     & 'facLS, JFNKresidual, resLoc = ',
579     & newtonIter, l, facLS, JFNKresidual, resLoc
580     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
581     & SQUEEZE_RIGHT, myThid )
582     _END_MASTER( myThid )
583     ENDIF
584     C Get ready for the next iteration: after adding du/vIce in the first
585     C iteration, we substract 0.5*du/vIce from u/vIce in the next
586     C iterations, 0.25*du/vIce in the second, etc.
587     facLS = - 0.5 _d 0 * ABS(facLS)
588     ENDDO
589     C This is the new residual
590     JFNKresidual = resLoc
591    
592 mlosch 1.21 #endif /* SEAICE_ALLOW_JFNK */
593 mlosch 1.1
594     RETURN
595     END

  ViewVC Help
Powered by ViewVC 1.1.22