/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.28 - (hide annotations) (download)
Mon Dec 1 12:31:36 2014 UTC (10 years, 7 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint65r, checkpoint65s, checkpoint65p, checkpoint65q, checkpoint65j, checkpoint65k, checkpoint65h, checkpoint65i, checkpoint65n, checkpoint65o, checkpoint65l, checkpoint65m
Changes since 1.27: +4 -2 lines
introduce strongly implicit coupling, intended for stabilizing LSR
(following Hutchings et al. 2004)
  - introduce zetaZ as a global variable (requires adjustments in
    seaice_evp.F and seaice_jfnk.F) and compute analoguously to etaZ
    in seaice_calc_viscosities.F
  - new flag SEAICEuseStrImpCpl (default off)
  - add new terms zetaZ*du/dy and zetaZ*dv/dx on both sides of the
    momentum equations

1 mlosch 1.28 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.27 2014/10/20 03:20:57 gforget Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5 gforget 1.27 #ifdef ALLOW_AUTODIFF
6     # include "AUTODIFF_OPTIONS.h"
7     #endif
8 mlosch 1.1
9 mlosch 1.15 C-- File seaice_jfnk.F: seaice jfnk dynamical solver S/R:
10     C-- Contents
11     C-- o SEAICE_JFNK
12     C-- o SEAICE_JFNK_UPDATE
13    
14 mlosch 1.1 CBOP
15     C !ROUTINE: SEAICE_JFNK
16     C !INTERFACE:
17     SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
18    
19     C !DESCRIPTION: \bv
20     C *==========================================================*
21 mlosch 1.15 C | SUBROUTINE SEAICE_JFNK
22 mlosch 1.1 C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
23     C | following J.-F. Lemieux et al. Improving the numerical
24     C | convergence of viscous-plastic sea ice models with the
25     C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
26     C | 2840-2852 (2010).
27     C | o The logic follows JFs code.
28     C *==========================================================*
29     C | written by Martin Losch, Oct 2012
30     C *==========================================================*
31     C \ev
32    
33     C !USES:
34     IMPLICIT NONE
35    
36     C === Global variables ===
37     #include "SIZE.h"
38     #include "EEPARAMS.h"
39     #include "PARAMS.h"
40     #include "DYNVARS.h"
41     #include "GRID.h"
42     #include "SEAICE_SIZE.h"
43     #include "SEAICE_PARAMS.h"
44     #include "SEAICE.h"
45    
46     #ifdef ALLOW_AUTODIFF_TAMC
47     # include "tamc.h"
48     #endif
49    
50     C !INPUT/OUTPUT PARAMETERS:
51     C === Routine arguments ===
52     C myTime :: Simulation time
53     C myIter :: Simulation timestep number
54     C myThid :: my Thread Id. number
55     _RL myTime
56     INTEGER myIter
57     INTEGER myThid
58    
59 mlosch 1.21 #ifdef SEAICE_ALLOW_JFNK
60 mlosch 1.5 C !FUNCTIONS:
61     LOGICAL DIFFERENT_MULTIPLE
62     EXTERNAL DIFFERENT_MULTIPLE
63 mlosch 1.1
64 mlosch 1.16 C !LOCAL VARIABLES:
65     C === Local variables ===
66 mlosch 1.1 C i,j,bi,bj :: loop indices
67     INTEGER i,j,bi,bj
68     C loop indices
69 mlosch 1.5 INTEGER newtonIter
70     INTEGER krylovIter, krylovFails
71 mlosch 1.13 INTEGER totalKrylovItersLoc, totalNewtonItersLoc
72 mlosch 1.5 C FGMRES flag that determines amount of output messages of fgmres
73     INTEGER iOutFGMRES
74     C FGMRES flag that indicates what fgmres wants us to do next
75 mlosch 1.1 INTEGER iCode
76 mlosch 1.13 _RL JFNKresidual
77 mlosch 1.1 _RL JFNKresidualKm1
78     C parameters to compute convergence criterion
79 mlosch 1.22 _RL JFNKgamma_lin
80 mlosch 1.1 _RL FGMRESeps
81     _RL JFNKtol
82 mlosch 1.24 C backward differences extrapolation factors
83     _RL bdfFac, bdfAlpha
84 mlosch 1.23 C
85 mlosch 1.1 _RL recip_deltaT
86     LOGICAL JFNKconverged, krylovConverged
87 mlosch 1.9 LOGICAL writeNow
88 mlosch 1.1 CHARACTER*(MAX_LEN_MBUF) msgBuf
89 jmc 1.20
90 mlosch 1.1 C u/vIceRes :: residual of sea-ice momentum equations
91     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
92     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
93 mlosch 1.24 C extra time level required for backward difference time stepping
94 mlosch 1.23 _RL duIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
95     _RL dvIcNm1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
96 mlosch 1.1 C du/vIce :: ice velocity increment to be added to u/vIce
97     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
98     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
99 jmc 1.20 C precomputed (= constant per Newton iteration) versions of
100 mlosch 1.2 C zeta, eta, and DWATN, press
101     _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
102 mlosch 1.28 _RL zetaZPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
103 mlosch 1.2 _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
104 mlosch 1.8 _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
105 mlosch 1.2 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
106 mlosch 1.1 CEOP
107    
108     C Initialise
109 mlosch 1.5 newtonIter = 0
110     krylovFails = 0
111     totalKrylovItersLoc = 0
112     JFNKconverged = .FALSE.
113     JFNKtol = 0. _d 0
114     JFNKresidual = 0. _d 0
115     JFNKresidualKm1 = 0. _d 0
116     FGMRESeps = 0. _d 0
117     recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
118    
119     iOutFGMRES=0
120 mlosch 1.12 C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration
121     IF ( debugLevel.GE.debLevC .AND.
122 mlosch 1.5 & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
123     & iOutFGMRES=1
124    
125 mlosch 1.24 C backward difference extrapolation factors
126     bdfFac = 0. _d 0
127     IF ( SEAICEuseBDF2 ) THEN
128     IF ( myIter.EQ.nIter0 .AND. SEAICEmomStartBDF.EQ.0 ) THEN
129     bdfFac = 0. _d 0
130 mlosch 1.23 ELSE
131 mlosch 1.24 bdfFac = 0.5 _d 0
132 mlosch 1.23 ENDIF
133     ENDIF
134 mlosch 1.24 bdfAlpha = 1. _d 0 + bdfFac
135 mlosch 1.23
136 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
137     DO bi=myBxLo(myThid),myBxHi(myThid)
138 jmc 1.20 DO J=1-OLy,sNy+OLy
139     DO I=1-OLx,sNx+OLx
140 mlosch 1.1 uIceRes(I,J,bi,bj) = 0. _d 0
141     vIceRes(I,J,bi,bj) = 0. _d 0
142     duIce (I,J,bi,bj) = 0. _d 0
143     dvIce (I,J,bi,bj) = 0. _d 0
144 mlosch 1.23 ENDDO
145     ENDDO
146     C cycle ice velocities
147     DO J=1-OLy,sNy+OLy
148     DO I=1-OLx,sNx+OLx
149 mlosch 1.24 duIcNm1(I,J,bi,bj) = uIce(I,J,bi,bj) * bdfAlpha
150     & + ( uIce(I,J,bi,bj) - uIceNm1(I,J,bi,bj) ) * bdfFac
151     dvIcNm1(I,J,bi,bj) = vIce(I,J,bi,bj) * bdfAlpha
152     & + ( vIce(I,J,bi,bj) - vIceNm1(I,J,bi,bj) ) * bdfFac
153 mlosch 1.1 uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
154     vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
155     ENDDO
156     ENDDO
157 mlosch 1.26 C As long as IMEX is not properly implemented leave this commented out
158     CML IF ( .NOT.SEAICEuseIMEX ) THEN
159 mlosch 1.1 C Compute things that do no change during the Newton iteration:
160 jmc 1.20 C sea-surface tilt and wind stress:
161 mlosch 1.25 C FORCEX/Y0 - mass*(1.5*u/vIceNm1+0.5*(u/vIceNm1-u/vIceNm2))/deltaT
162 jmc 1.20 DO J=1-OLy,sNy+OLy
163     DO I=1-OLx,sNx+OLx
164 mlosch 1.1 FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
165 mlosch 1.23 & + seaiceMassU(I,J,bi,bj)*duIcNm1(I,J,bi,bj)*recip_deltaT
166 mlosch 1.1 FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
167 mlosch 1.23 & + seaiceMassV(I,J,bi,bj)*dvIcNm1(I,J,bi,bj)*recip_deltaT
168 mlosch 1.1 ENDDO
169     ENDDO
170 mlosch 1.26 CML ENDIF
171 mlosch 1.1 ENDDO
172     ENDDO
173     C Start nonlinear Newton iteration: outer loop iteration
174     DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.
175     & .NOT.JFNKconverged )
176     newtonIter = newtonIter + 1
177     C Compute initial residual F(u), (includes computation of global
178     C variables DWATN, zeta, and eta)
179 jmc 1.20 IF ( newtonIter .EQ. 1 ) CALL SEAICE_JFNK_UPDATE(
180     I duIce, dvIce,
181 mlosch 1.15 U uIce, vIce, JFNKresidual,
182     O uIceRes, vIceRes,
183     I newtonIter, myTime, myIter, myThid )
184 mlosch 1.1 C local copies of precomputed coefficients that are to stay
185     C constant for the preconditioner
186     DO bj=myByLo(myThid),myByHi(myThid)
187     DO bi=myBxLo(myThid),myBxHi(myThid)
188 jmc 1.20 DO j=1-OLy,sNy+OLy
189     DO i=1-OLx,sNx+OLx
190 mlosch 1.10 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
191 mlosch 1.28 zetaZPre(I,J,bi,bj)= zetaZ(I,J,bi,bj)
192 mlosch 1.10 etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
193     etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj)
194     dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
195 mlosch 1.1 ENDDO
196     ENDDO
197     ENDDO
198     ENDDO
199     C compute convergence criterion for linear preconditioned FGMRES
200     JFNKgamma_lin = JFNKgamma_lin_max
201 mlosch 1.18 IF ( newtonIter.GT.1.AND.newtonIter.LE.SEAICE_JFNK_tolIter
202 mlosch 1.1 & .AND.JFNKresidual.LT.JFNKres_t ) THEN
203 mlosch 1.22 C Eisenstat and Walker (1996), eq.(2.6)
204     JFNKgamma_lin = SEAICE_JFNKphi
205     & *( JFNKresidual/JFNKresidualKm1 )**SEAICE_JFNKalpha
206 mlosch 1.1 JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
207     JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
208     ENDIF
209     C save the residual for the next iteration
210     JFNKresidualKm1 = JFNKresidual
211 jmc 1.20
212 mlosch 1.1 C The Krylov iteration using FGMRES, the preconditioner is LSOR
213     C for now. The code is adapted from SEAICE_LSR, but heavily stripped
214     C down.
215     C krylovIter is mapped into "its" in seaice_fgmres and is incremented
216     C in that routine
217     krylovIter = 0
218     iCode = 0
219 jmc 1.20
220 mlosch 1.1 JFNKconverged = JFNKresidual.LT.JFNKtol
221 jmc 1.20
222 mlosch 1.1 C do Krylov loop only if convergence is not reached
223 jmc 1.20
224 mlosch 1.1 IF ( .NOT.JFNKconverged ) THEN
225 jmc 1.20
226 mlosch 1.1 C start Krylov iteration (FGMRES)
227 jmc 1.20
228 mlosch 1.1 krylovConverged = .FALSE.
229     FGMRESeps = JFNKgamma_lin * JFNKresidual
230 jmc 1.20 DO WHILE ( .NOT.krylovConverged )
231 mlosch 1.1 C solution vector sol = du/vIce
232     C residual vector (rhs) Fu = u/vIceRes
233 jmc 1.20 C output work vectors wk1, -> input work vector wk2
234    
235 mlosch 1.1 CALL SEAICE_FGMRES_DRIVER(
236 jmc 1.20 I uIceRes, vIceRes,
237 mlosch 1.1 U duIce, dvIce, iCode,
238 mlosch 1.5 I FGMRESeps, iOutFGMRES,
239 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
240     C FGMRES returns iCode either asking for an new preconditioned vector
241     C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
242     C iteration
243     IF (iCode.EQ.1) THEN
244 jmc 1.20 C Call preconditioner
245 mlosch 1.7 IF ( SOLV_MAX_ITERS .GT. 0 )
246 jmc 1.20 & CALL SEAICE_PRECONDITIONER(
247     U duIce, dvIce,
248 mlosch 1.28 I zetaPre, etaPre, etaZpre, zetaZpre, dwatPre,
249 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
250     ELSEIF (iCode.GE.2) THEN
251     C Compute Jacobian times vector
252     CALL SEAICE_JACVEC(
253     I uIce, vIce, uIceRes, vIceRes,
254 jmc 1.20 U duIce, dvIce,
255 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
256     ENDIF
257     krylovConverged = iCode.EQ.0
258     C End of Krylov iterate
259     ENDDO
260 mlosch 1.5 totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
261 mlosch 1.1 C some output diagnostics
262     IF ( debugLevel.GE.debLevA ) THEN
263 mlosch 1.5 _BEGIN_MASTER( myThid )
264 jmc 1.20 totalNewtonItersLoc =
265 mlosch 1.13 & SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter
266 jmc 1.20 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
267 mlosch 1.13 & ' S/R SEAICE_JFNK: Newton iterate / total, ',
268     & 'JFNKgamma_lin, initial norm = ',
269     & newtonIter, totalNewtonItersLoc,
270     & JFNKgamma_lin,JFNKresidual
271     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
272     & SQUEEZE_RIGHT, myThid )
273 mlosch 1.1 WRITE(msgBuf,'(3(A,I6))')
274 jmc 1.20 & ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter,
275 mlosch 1.13 & ' / ', totalNewtonItersLoc,
276 mlosch 1.1 & ', Nb. of FGMRES iterations = ', krylovIter
277     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
278     & SQUEEZE_RIGHT, myThid )
279 mlosch 1.5 _END_MASTER( myThid )
280 mlosch 1.1 ENDIF
281     IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
282 mlosch 1.5 krylovFails = krylovFails + 1
283 mlosch 1.1 ENDIF
284 mlosch 1.17 C Set the stopping criterion for the Newton iteration and the
285     C criterion for the transition from accurate to approximate FGMRES
286     IF ( newtonIter .EQ. 1 ) THEN
287     JFNKtol=JFNKgamma_nonlin*JFNKresidual
288     IF ( JFNKres_tFac .NE. UNSET_RL )
289     & JFNKres_t = JFNKresidual * JFNKres_tFac
290     ENDIF
291 mlosch 1.1 C Update linear solution vector and return to Newton iteration
292 mlosch 1.15 C Do a linesearch if necessary, and compute a new residual.
293     C Note that it should be possible to do the following operations
294     C at the beginning of the Newton iteration, thereby saving us from
295     C the extra call of seaice_jfnk_update, but unfortunately that
296     C changes the results, so we leave the stuff here for now.
297 jmc 1.20 CALL SEAICE_JFNK_UPDATE(
298     I duIce, dvIce,
299 mlosch 1.15 U uIce, vIce, JFNKresidual,
300     O uIceRes, vIceRes,
301     I newtonIter, myTime, myIter, myThid )
302     C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
303 mlosch 1.1 DO bj=myByLo(myThid),myByHi(myThid)
304     DO bi=myBxLo(myThid),myBxHi(myThid)
305 jmc 1.20 DO J=1-OLy,sNy+OLy
306     DO I=1-OLx,sNx+OLx
307 mlosch 1.4 duIce(I,J,bi,bj)= 0. _d 0
308     dvIce(I,J,bi,bj)= 0. _d 0
309 mlosch 1.1 ENDDO
310     ENDDO
311     ENDDO
312     ENDDO
313     ENDIF
314     C end of Newton iterate
315     ENDDO
316 jmc 1.20
317 mlosch 1.5 C-- Output diagnostics
318 jmc 1.20
319 mlosch 1.6 IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
320 mlosch 1.5 C Count iterations
321 mlosch 1.6 totalJFNKtimeSteps = totalJFNKtimeSteps + 1
322     totalNewtonIters = totalNewtonIters + newtonIter
323     totalKrylovIters = totalKrylovIters + totalKrylovItersLoc
324 mlosch 1.5 C Record failure
325 mlosch 1.6 totalKrylovFails = totalKrylovFails + krylovFails
326     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
327 jmc 1.20 totalNewtonFails = totalNewtonFails + 1
328 mlosch 1.6 ENDIF
329 mlosch 1.5 ENDIF
330     C Decide whether it is time to dump and reset the counter
331 mlosch 1.9 writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
332 jmc 1.20 & myTime+deltaTClock, deltaTClock)
333 mlosch 1.9 #ifdef ALLOW_CAL
334     IF ( useCAL ) THEN
335 jmc 1.20 CALL CAL_TIME2DUMP(
336 mlosch 1.9 I zeroRL, SEAICE_monFreq, deltaTClock,
337     U writeNow,
338     I myTime+deltaTclock, myIter+1, myThid )
339     ENDIF
340     #endif
341     IF ( writeNow ) THEN
342 mlosch 1.5 _BEGIN_MASTER( myThid )
343 jmc 1.20 WRITE(msgBuf,'(A)')
344 mlosch 1.5 &' // ======================================================='
345     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
346     & SQUEEZE_RIGHT, myThid )
347     WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
348     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
349     & SQUEEZE_RIGHT, myThid )
350 jmc 1.20 WRITE(msgBuf,'(A)')
351 mlosch 1.5 &' // ======================================================='
352     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
353     & SQUEEZE_RIGHT, myThid )
354 jmc 1.20 WRITE(msgBuf,'(A,I10)')
355 mlosch 1.5 & ' %JFNK_MON: time step = ', myIter+1
356     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
357     & SQUEEZE_RIGHT, myThid )
358 jmc 1.20 WRITE(msgBuf,'(A,I10)')
359 mlosch 1.5 & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps
360     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
361     & SQUEEZE_RIGHT, myThid )
362 jmc 1.20 WRITE(msgBuf,'(A,I10)')
363 mlosch 1.5 & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters
364     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
365     & SQUEEZE_RIGHT, myThid )
366 jmc 1.20 WRITE(msgBuf,'(A,I10)')
367 mlosch 1.5 & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters
368     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
369     & SQUEEZE_RIGHT, myThid )
370 jmc 1.20 WRITE(msgBuf,'(A,I10)')
371 mlosch 1.5 & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
372     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
373     & SQUEEZE_RIGHT, myThid )
374 jmc 1.20 WRITE(msgBuf,'(A,I10)')
375 mlosch 1.5 & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
376     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
377     & SQUEEZE_RIGHT, myThid )
378 jmc 1.20 WRITE(msgBuf,'(A)')
379 mlosch 1.5 &' // ======================================================='
380     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
381     & SQUEEZE_RIGHT, myThid )
382 mlosch 1.11 WRITE(msgBuf,'(A)') ' // End JFNK statistics'
383 mlosch 1.5 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
384     & SQUEEZE_RIGHT, myThid )
385 jmc 1.20 WRITE(msgBuf,'(A)')
386 mlosch 1.5 &' // ======================================================='
387     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
388     & SQUEEZE_RIGHT, myThid )
389     _END_MASTER( myThid )
390     C reset and start again
391     totalJFNKtimeSteps = 0
392     totalNewtonIters = 0
393     totalKrylovIters = 0
394     totalKrylovFails = 0
395     totalNewtonFails = 0
396     ENDIF
397    
398     C Print more debugging information
399 mlosch 1.1 IF ( debugLevel.GE.debLevA ) THEN
400     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
401 mlosch 1.5 _BEGIN_MASTER( myThid )
402 jmc 1.20 WRITE(msgBuf,'(A,I10)')
403 mlosch 1.1 & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
404 mlosch 1.5 & myIter+1
405 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
406     & SQUEEZE_RIGHT, myThid )
407 mlosch 1.5 _END_MASTER( myThid )
408 mlosch 1.1 ENDIF
409 mlosch 1.5 IF ( krylovFails .GT. 0 ) THEN
410     _BEGIN_MASTER( myThid )
411 jmc 1.20 WRITE(msgBuf,'(A,I4,A,I10)')
412 mlosch 1.1 & ' S/R SEAICE_JFNK: FGMRES did not converge ',
413 mlosch 1.5 & krylovFails, ' times in timestep ', myIter+1
414 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
415     & SQUEEZE_RIGHT, myThid )
416 mlosch 1.5 _END_MASTER( myThid )
417 mlosch 1.1 ENDIF
418 mlosch 1.5 _BEGIN_MASTER( myThid )
419 jmc 1.20 WRITE(msgBuf,'(A,I6,A,I10)')
420 mlosch 1.1 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
421 mlosch 1.5 & totalKrylovItersLoc, ' in timestep ', myIter+1
422     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
423     & SQUEEZE_RIGHT, myThid )
424     _END_MASTER( myThid )
425 mlosch 1.1 ENDIF
426    
427 mlosch 1.15 RETURN
428     END
429    
430 mlosch 1.16 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
431 mlosch 1.15 CBOP
432     C !ROUTINE: SEAICE_JFNK_UPDATE
433     C !INTERFACE:
434    
435 jmc 1.20 SUBROUTINE SEAICE_JFNK_UPDATE(
436     I duIce, dvIce,
437 mlosch 1.15 U uIce, vIce, JFNKresidual,
438     O uIceRes, vIceRes,
439     I newtonIter, myTime, myIter, myThid )
440    
441     C !DESCRIPTION: \bv
442     C *==========================================================*
443     C | SUBROUTINE SEAICE_JFNK_UPDATE
444     C | o Update velocities with incremental solutions of FGMRES
445     C | o compute residual of updated solutions and do
446     C | o linesearch:
447     C | reduce update until residual is smaller than previous
448     C | one (input)
449     C *==========================================================*
450     C | written by Martin Losch, Jan 2013
451     C *==========================================================*
452     C \ev
453    
454     C !USES:
455     IMPLICIT NONE
456    
457     C === Global variables ===
458     #include "SIZE.h"
459     #include "EEPARAMS.h"
460     #include "PARAMS.h"
461     #include "SEAICE_SIZE.h"
462     #include "SEAICE_PARAMS.h"
463    
464     C !INPUT/OUTPUT PARAMETERS:
465     C === Routine arguments ===
466     C myTime :: Simulation time
467     C myIter :: Simulation timestep number
468     C myThid :: my Thread Id. number
469     C newtonIter :: current iterate of Newton iteration
470     _RL myTime
471     INTEGER myIter
472     INTEGER myThid
473     INTEGER newtonIter
474     C JFNKresidual :: Residual at the beginning of the FGMRES iteration,
475     C changes with newtonIter (updated)
476     _RL JFNKresidual
477     C du/vIce :: ice velocity increment to be added to u/vIce (input)
478     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
479     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
480     C u/vIce :: ice velocity increment to be added to u/vIce (updated)
481     _RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
482     _RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
483     C u/vIceRes :: residual of sea-ice momentum equations (output)
484     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
485     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
486    
487 mlosch 1.16 C !LOCAL VARIABLES:
488     C === Local variables ===
489 mlosch 1.15 C i,j,bi,bj :: loop indices
490     INTEGER i,j,bi,bj
491     INTEGER l
492     _RL resLoc, facLS
493     LOGICAL doLineSearch
494     C nVec :: size of the input vector(s)
495 jmc 1.20 C resTmp :: vector version of the residuals
496 mlosch 1.15 INTEGER nVec
497     PARAMETER ( nVec = 2*sNx*sNy )
498     _RL resTmp (nVec,1,nSx,nSy)
499 jmc 1.20
500 mlosch 1.15 CHARACTER*(MAX_LEN_MBUF) msgBuf
501     CEOP
502    
503     C Initialise some local variables
504     l = 0
505     resLoc = JFNKresidual
506     facLS = 1. _d 0
507     doLineSearch = .TRUE.
508     DO WHILE ( doLineSearch )
509     C Create update
510     DO bj=myByLo(myThid),myByHi(myThid)
511     DO bi=myBxLo(myThid),myBxHi(myThid)
512 jmc 1.20 DO J=1-OLy,sNy+OLy
513     DO I=1-OLx,sNx+OLx
514 mlosch 1.15 uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+facLS*duIce(I,J,bi,bj)
515     vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+facLS*dvIce(I,J,bi,bj)
516     ENDDO
517     ENDDO
518     ENDDO
519     ENDDO
520     C Compute current residual F(u), (includes re-computation of global
521     C variables DWATN, zeta, and eta, i.e. they are different after this)
522 jmc 1.20 CALL SEAICE_CALC_RESIDUAL(
523     I uIce, vIce,
524     O uIceRes, vIceRes,
525 mlosch 1.15 I newtonIter, 0, myTime, myIter, myThid )
526     C Important: Compute the norm of the residual using the same scalar
527     C product that SEAICE_FGMRES does
528     CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid)
529     CALL SEAICE_SCALPROD(nVec,1,1,1,resTmp,resTmp,resLoc,myThid)
530     resLoc = SQRT(resLoc)
531 mlosch 1.19 C Determine, if we need more iterations
532 jmc 1.20 doLineSearch = resLoc .GE. JFNKresidual
533 mlosch 1.19 C Limit the maximum number of iterations arbitrarily to four
534 jmc 1.20 doLineSearch = doLineSearch .AND. l .LT. 4
535 mlosch 1.19 C For the first iteration du/vIce = 0 and there will be no
536     C improvement of the residual possible, so we do only the first
537     C iteration
538     IF ( newtonIter .EQ. 1 ) doLineSearch = .FALSE.
539     C Only start a linesearch after some Newton iterations
540     IF ( newtonIter .LE. SEAICE_JFNK_lsIter ) doLineSearch = .FALSE.
541     C Increment counter
542     l = l + 1
543 mlosch 1.15 C some output diagnostics
544     IF ( debugLevel.GE.debLevA .AND. doLineSearch ) THEN
545     _BEGIN_MASTER( myThid )
546 jmc 1.20 WRITE(msgBuf,'(2A,2(1XI6),3E12.5)')
547 mlosch 1.15 & ' S/R SEAICE_JFNK_UPDATE: Newton iter, LSiter, ',
548     & 'facLS, JFNKresidual, resLoc = ',
549     & newtonIter, l, facLS, JFNKresidual, resLoc
550     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
551     & SQUEEZE_RIGHT, myThid )
552     _END_MASTER( myThid )
553     ENDIF
554     C Get ready for the next iteration: after adding du/vIce in the first
555     C iteration, we substract 0.5*du/vIce from u/vIce in the next
556     C iterations, 0.25*du/vIce in the second, etc.
557     facLS = - 0.5 _d 0 * ABS(facLS)
558     ENDDO
559     C This is the new residual
560     JFNKresidual = resLoc
561    
562 mlosch 1.21 #endif /* SEAICE_ALLOW_JFNK */
563 mlosch 1.1
564     RETURN
565     END

  ViewVC Help
Powered by ViewVC 1.1.22