1 |
mlosch |
1.13 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.12 2012/12/17 10:08:16 mlosch Exp $ |
2 |
mlosch |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
CBOP |
7 |
|
|
C !ROUTINE: SEAICE_JFNK |
8 |
|
|
C !INTERFACE: |
9 |
|
|
SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid ) |
10 |
|
|
|
11 |
|
|
C !DESCRIPTION: \bv |
12 |
|
|
C *==========================================================* |
13 |
|
|
C | SUBROUTINE SEAICE_JFKF |
14 |
|
|
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
15 |
|
|
C | following J.-F. Lemieux et al. Improving the numerical |
16 |
|
|
C | convergence of viscous-plastic sea ice models with the |
17 |
|
|
C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229, |
18 |
|
|
C | 2840-2852 (2010). |
19 |
|
|
C | o The logic follows JFs code. |
20 |
|
|
C *==========================================================* |
21 |
|
|
C | written by Martin Losch, Oct 2012 |
22 |
|
|
C *==========================================================* |
23 |
|
|
C \ev |
24 |
|
|
|
25 |
|
|
C !USES: |
26 |
|
|
IMPLICIT NONE |
27 |
|
|
|
28 |
|
|
C === Global variables === |
29 |
|
|
#include "SIZE.h" |
30 |
|
|
#include "EEPARAMS.h" |
31 |
|
|
#include "PARAMS.h" |
32 |
|
|
#include "DYNVARS.h" |
33 |
|
|
#include "GRID.h" |
34 |
|
|
#include "SEAICE_SIZE.h" |
35 |
|
|
#include "SEAICE_PARAMS.h" |
36 |
|
|
#include "SEAICE.h" |
37 |
|
|
|
38 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
39 |
|
|
# include "tamc.h" |
40 |
|
|
#endif |
41 |
|
|
|
42 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
43 |
|
|
C === Routine arguments === |
44 |
|
|
C myTime :: Simulation time |
45 |
|
|
C myIter :: Simulation timestep number |
46 |
|
|
C myThid :: my Thread Id. number |
47 |
|
|
_RL myTime |
48 |
|
|
INTEGER myIter |
49 |
|
|
INTEGER myThid |
50 |
|
|
|
51 |
|
|
#if ( (defined SEAICE_CGRID) && \ |
52 |
|
|
(defined SEAICE_ALLOW_JFNK) && \ |
53 |
|
|
(defined SEAICE_ALLOW_DYNAMICS) ) |
54 |
mlosch |
1.5 |
C !FUNCTIONS: |
55 |
|
|
LOGICAL DIFFERENT_MULTIPLE |
56 |
|
|
EXTERNAL DIFFERENT_MULTIPLE |
57 |
mlosch |
1.1 |
|
58 |
|
|
C i,j,bi,bj :: loop indices |
59 |
|
|
INTEGER i,j,bi,bj |
60 |
|
|
C loop indices |
61 |
mlosch |
1.5 |
INTEGER newtonIter |
62 |
|
|
INTEGER krylovIter, krylovFails |
63 |
mlosch |
1.13 |
INTEGER totalKrylovItersLoc, totalNewtonItersLoc |
64 |
mlosch |
1.5 |
C FGMRES flag that determines amount of output messages of fgmres |
65 |
|
|
INTEGER iOutFGMRES |
66 |
|
|
C FGMRES flag that indicates what fgmres wants us to do next |
67 |
mlosch |
1.1 |
INTEGER iCode |
68 |
mlosch |
1.13 |
_RL JFNKresidual |
69 |
mlosch |
1.1 |
_RL JFNKresidualKm1 |
70 |
|
|
C parameters to compute convergence criterion |
71 |
|
|
_RL phi_e, alp_e, JFNKgamma_lin |
72 |
|
|
_RL FGMRESeps |
73 |
|
|
_RL JFNKtol |
74 |
|
|
C |
75 |
|
|
_RL recip_deltaT |
76 |
|
|
LOGICAL JFNKconverged, krylovConverged |
77 |
mlosch |
1.9 |
LOGICAL writeNow |
78 |
mlosch |
1.1 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
79 |
|
|
C |
80 |
|
|
C u/vIceRes :: residual of sea-ice momentum equations |
81 |
|
|
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
82 |
|
|
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
83 |
|
|
C du/vIce :: ice velocity increment to be added to u/vIce |
84 |
|
|
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
85 |
|
|
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
86 |
|
|
C precomputed (= constant per Newton iteration) versions of |
87 |
mlosch |
1.2 |
C zeta, eta, and DWATN, press |
88 |
|
|
_RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
89 |
|
|
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
90 |
mlosch |
1.8 |
_RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
91 |
mlosch |
1.2 |
_RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
92 |
mlosch |
1.1 |
CEOP |
93 |
mlosch |
1.13 |
INTEGER n |
94 |
|
|
_RL resTmp (nVec,1,nSx,nSy) |
95 |
mlosch |
1.1 |
|
96 |
|
|
C Initialise |
97 |
mlosch |
1.5 |
newtonIter = 0 |
98 |
|
|
krylovFails = 0 |
99 |
|
|
totalKrylovItersLoc = 0 |
100 |
|
|
JFNKconverged = .FALSE. |
101 |
|
|
JFNKtol = 0. _d 0 |
102 |
|
|
JFNKresidual = 0. _d 0 |
103 |
|
|
JFNKresidualKm1 = 0. _d 0 |
104 |
|
|
FGMRESeps = 0. _d 0 |
105 |
|
|
recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn |
106 |
|
|
|
107 |
|
|
iOutFGMRES=0 |
108 |
mlosch |
1.12 |
C with iOutFgmres=1, seaice_fgmres prints the residual at each iteration |
109 |
|
|
IF ( debugLevel.GE.debLevC .AND. |
110 |
mlosch |
1.5 |
& DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) ) |
111 |
|
|
& iOutFGMRES=1 |
112 |
|
|
|
113 |
mlosch |
1.1 |
C |
114 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
115 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
116 |
|
|
DO J=1-Oly,sNy+Oly |
117 |
|
|
DO I=1-Olx,sNx+Olx |
118 |
|
|
uIceRes(I,J,bi,bj) = 0. _d 0 |
119 |
|
|
vIceRes(I,J,bi,bj) = 0. _d 0 |
120 |
|
|
duIce (I,J,bi,bj) = 0. _d 0 |
121 |
|
|
dvIce (I,J,bi,bj) = 0. _d 0 |
122 |
|
|
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
123 |
|
|
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
124 |
|
|
ENDDO |
125 |
|
|
ENDDO |
126 |
|
|
C Compute things that do no change during the Newton iteration: |
127 |
|
|
C sea-surface tilt and wind stress: |
128 |
|
|
C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT |
129 |
|
|
DO J=1-Oly,sNy+Oly |
130 |
|
|
DO I=1-Olx,sNx+Olx |
131 |
|
|
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
132 |
|
|
& + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT |
133 |
|
|
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
134 |
|
|
& + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT |
135 |
|
|
ENDDO |
136 |
|
|
ENDDO |
137 |
|
|
ENDDO |
138 |
|
|
ENDDO |
139 |
|
|
C Start nonlinear Newton iteration: outer loop iteration |
140 |
|
|
DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND. |
141 |
|
|
& .NOT.JFNKconverged ) |
142 |
|
|
newtonIter = newtonIter + 1 |
143 |
|
|
C Compute initial residual F(u), (includes computation of global |
144 |
|
|
C variables DWATN, zeta, and eta) |
145 |
|
|
CALL SEAICE_CALC_RESIDUAL( |
146 |
|
|
I uIce, vIce, |
147 |
|
|
O uIceRes, vIceRes, |
148 |
|
|
I newtonIter, 0, myTime, myIter, myThid ) |
149 |
mlosch |
1.12 |
C probably not necessary, will be removed later: |
150 |
mlosch |
1.3 |
CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid) |
151 |
mlosch |
1.1 |
C local copies of precomputed coefficients that are to stay |
152 |
|
|
C constant for the preconditioner |
153 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
154 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
155 |
|
|
DO j=1-Oly,sNy+Oly |
156 |
|
|
DO i=1-Olx,sNx+Olx |
157 |
mlosch |
1.10 |
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
158 |
|
|
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
159 |
|
|
etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj) |
160 |
|
|
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
161 |
mlosch |
1.1 |
ENDDO |
162 |
|
|
ENDDO |
163 |
|
|
ENDDO |
164 |
|
|
ENDDO |
165 |
mlosch |
1.13 |
C Important: Compute the norm of the residual using the same scalar |
166 |
|
|
C product that SEAICE_FGMRES does |
167 |
|
|
CALL SEAICE_MAP2VEC(nVec,uIceRes,vIceRes,resTmp,.TRUE.,myThid) |
168 |
|
|
CALL SEAICE_SCALPROD( |
169 |
|
|
& nVec,1,1,1,resTmp,resTmp,JFNKresidual,myThid) |
170 |
mlosch |
1.1 |
JFNKresidual = SQRT(JFNKresidual) |
171 |
|
|
C compute convergence criterion for linear preconditioned FGMRES |
172 |
|
|
JFNKgamma_lin = JFNKgamma_lin_max |
173 |
|
|
IF ( newtonIter.GT.1.AND.newtonIter.LE.100 |
174 |
|
|
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
175 |
|
|
C Eisenstat, 1996, equ.(2.6) |
176 |
|
|
phi_e = 1. _d 0 |
177 |
|
|
alp_e = 1. _d 0 |
178 |
|
|
JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e |
179 |
|
|
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
180 |
|
|
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
181 |
|
|
ENDIF |
182 |
|
|
C save the residual for the next iteration |
183 |
|
|
JFNKresidualKm1 = JFNKresidual |
184 |
|
|
C |
185 |
|
|
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
186 |
|
|
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
187 |
|
|
C down. |
188 |
|
|
C krylovIter is mapped into "its" in seaice_fgmres and is incremented |
189 |
|
|
C in that routine |
190 |
|
|
krylovIter = 0 |
191 |
|
|
iCode = 0 |
192 |
|
|
C |
193 |
|
|
JFNKconverged = JFNKresidual.LT.JFNKtol |
194 |
|
|
C |
195 |
|
|
C do Krylov loop only if convergence is not reached |
196 |
|
|
C |
197 |
|
|
IF ( .NOT.JFNKconverged ) THEN |
198 |
|
|
C |
199 |
|
|
C start Krylov iteration (FGMRES) |
200 |
|
|
C |
201 |
|
|
krylovConverged = .FALSE. |
202 |
|
|
FGMRESeps = JFNKgamma_lin * JFNKresidual |
203 |
|
|
DO WHILE ( .NOT.krylovConverged ) |
204 |
|
|
C solution vector sol = du/vIce |
205 |
|
|
C residual vector (rhs) Fu = u/vIceRes |
206 |
|
|
C output work vectors wk1, -> input work vector wk2 |
207 |
|
|
C |
208 |
|
|
CALL SEAICE_FGMRES_DRIVER( |
209 |
|
|
I uIceRes, vIceRes, |
210 |
|
|
U duIce, dvIce, iCode, |
211 |
mlosch |
1.5 |
I FGMRESeps, iOutFGMRES, |
212 |
mlosch |
1.1 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
213 |
|
|
C FGMRES returns iCode either asking for an new preconditioned vector |
214 |
|
|
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
215 |
|
|
C iteration |
216 |
|
|
IF (iCode.EQ.1) THEN |
217 |
mlosch |
1.7 |
C Call preconditioner |
218 |
|
|
IF ( SOLV_MAX_ITERS .GT. 0 ) |
219 |
|
|
& CALL SEAICE_PRECONDITIONER( |
220 |
mlosch |
1.1 |
U duIce, dvIce, |
221 |
mlosch |
1.10 |
I zetaPre, etaPre, etaZpre, dwatPre, |
222 |
mlosch |
1.1 |
I newtonIter, krylovIter, myTime, myIter, myThid ) |
223 |
|
|
ELSEIF (iCode.GE.2) THEN |
224 |
|
|
C Compute Jacobian times vector |
225 |
|
|
CALL SEAICE_JACVEC( |
226 |
|
|
I uIce, vIce, uIceRes, vIceRes, |
227 |
|
|
U duIce, dvIce, |
228 |
|
|
I newtonIter, krylovIter, myTime, myIter, myThid ) |
229 |
|
|
ENDIF |
230 |
|
|
krylovConverged = iCode.EQ.0 |
231 |
|
|
C End of Krylov iterate |
232 |
|
|
ENDDO |
233 |
mlosch |
1.5 |
totalKrylovItersLoc = totalKrylovItersLoc + krylovIter |
234 |
mlosch |
1.1 |
C some output diagnostics |
235 |
|
|
IF ( debugLevel.GE.debLevA ) THEN |
236 |
mlosch |
1.5 |
_BEGIN_MASTER( myThid ) |
237 |
mlosch |
1.13 |
totalNewtonItersLoc = |
238 |
|
|
& SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter |
239 |
|
|
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
240 |
|
|
& ' S/R SEAICE_JFNK: Newton iterate / total, ', |
241 |
|
|
& 'JFNKgamma_lin, initial norm = ', |
242 |
|
|
& newtonIter, totalNewtonItersLoc, |
243 |
|
|
& JFNKgamma_lin,JFNKresidual |
244 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
245 |
|
|
& SQUEEZE_RIGHT, myThid ) |
246 |
mlosch |
1.1 |
WRITE(msgBuf,'(3(A,I6))') |
247 |
mlosch |
1.13 |
& ' S/R SEAICE_JFNK: Newton iterate / total = ',newtonIter, |
248 |
|
|
& ' / ', totalNewtonItersLoc, |
249 |
mlosch |
1.1 |
& ', Nb. of FGMRES iterations = ', krylovIter |
250 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
251 |
|
|
& SQUEEZE_RIGHT, myThid ) |
252 |
mlosch |
1.5 |
_END_MASTER( myThid ) |
253 |
mlosch |
1.1 |
ENDIF |
254 |
|
|
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
255 |
mlosch |
1.5 |
krylovFails = krylovFails + 1 |
256 |
mlosch |
1.1 |
ENDIF |
257 |
|
|
C Update linear solution vector and return to Newton iteration |
258 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
259 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
260 |
|
|
DO J=1-Oly,sNy+Oly |
261 |
|
|
DO I=1-Olx,sNx+Olx |
262 |
|
|
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj) |
263 |
|
|
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj) |
264 |
mlosch |
1.4 |
C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver |
265 |
|
|
duIce(I,J,bi,bj)= 0. _d 0 |
266 |
|
|
dvIce(I,J,bi,bj)= 0. _d 0 |
267 |
mlosch |
1.1 |
ENDDO |
268 |
|
|
ENDDO |
269 |
|
|
ENDDO |
270 |
|
|
ENDDO |
271 |
|
|
C Set the stopping criterion for the Newton iteration |
272 |
|
|
IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual |
273 |
|
|
ENDIF |
274 |
|
|
C end of Newton iterate |
275 |
|
|
ENDDO |
276 |
mlosch |
1.5 |
C |
277 |
|
|
C-- Output diagnostics |
278 |
|
|
C |
279 |
mlosch |
1.6 |
IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN |
280 |
mlosch |
1.5 |
C Count iterations |
281 |
mlosch |
1.6 |
totalJFNKtimeSteps = totalJFNKtimeSteps + 1 |
282 |
|
|
totalNewtonIters = totalNewtonIters + newtonIter |
283 |
|
|
totalKrylovIters = totalKrylovIters + totalKrylovItersLoc |
284 |
mlosch |
1.5 |
C Record failure |
285 |
mlosch |
1.6 |
totalKrylovFails = totalKrylovFails + krylovFails |
286 |
|
|
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
287 |
|
|
totalNewtonFails = totalNewtonFails + 1 |
288 |
|
|
ENDIF |
289 |
mlosch |
1.5 |
ENDIF |
290 |
|
|
C Decide whether it is time to dump and reset the counter |
291 |
mlosch |
1.9 |
writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq, |
292 |
|
|
& myTime+deltaTClock, deltaTClock) |
293 |
|
|
#ifdef ALLOW_CAL |
294 |
|
|
IF ( useCAL ) THEN |
295 |
|
|
CALL CAL_TIME2DUMP( |
296 |
|
|
I zeroRL, SEAICE_monFreq, deltaTClock, |
297 |
|
|
U writeNow, |
298 |
|
|
I myTime+deltaTclock, myIter+1, myThid ) |
299 |
|
|
ENDIF |
300 |
|
|
#endif |
301 |
|
|
IF ( writeNow ) THEN |
302 |
mlosch |
1.5 |
_BEGIN_MASTER( myThid ) |
303 |
|
|
WRITE(msgBuf,'(A)') |
304 |
|
|
&' // =======================================================' |
305 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
306 |
|
|
& SQUEEZE_RIGHT, myThid ) |
307 |
|
|
WRITE(msgBuf,'(A)') ' // Begin JFNK statistics' |
308 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
309 |
|
|
& SQUEEZE_RIGHT, myThid ) |
310 |
|
|
WRITE(msgBuf,'(A)') |
311 |
|
|
&' // =======================================================' |
312 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
313 |
|
|
& SQUEEZE_RIGHT, myThid ) |
314 |
|
|
WRITE(msgBuf,'(A,I10)') |
315 |
|
|
& ' %JFNK_MON: time step = ', myIter+1 |
316 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
317 |
|
|
& SQUEEZE_RIGHT, myThid ) |
318 |
|
|
WRITE(msgBuf,'(A,I10)') |
319 |
|
|
& ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps |
320 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
321 |
|
|
& SQUEEZE_RIGHT, myThid ) |
322 |
|
|
WRITE(msgBuf,'(A,I10)') |
323 |
|
|
& ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters |
324 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
325 |
|
|
& SQUEEZE_RIGHT, myThid ) |
326 |
|
|
WRITE(msgBuf,'(A,I10)') |
327 |
|
|
& ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters |
328 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
329 |
|
|
& SQUEEZE_RIGHT, myThid ) |
330 |
|
|
WRITE(msgBuf,'(A,I10)') |
331 |
|
|
& ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails |
332 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
333 |
|
|
& SQUEEZE_RIGHT, myThid ) |
334 |
|
|
WRITE(msgBuf,'(A,I10)') |
335 |
|
|
& ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails |
336 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
337 |
|
|
& SQUEEZE_RIGHT, myThid ) |
338 |
|
|
WRITE(msgBuf,'(A)') |
339 |
|
|
&' // =======================================================' |
340 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
341 |
|
|
& SQUEEZE_RIGHT, myThid ) |
342 |
mlosch |
1.11 |
WRITE(msgBuf,'(A)') ' // End JFNK statistics' |
343 |
mlosch |
1.5 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
344 |
|
|
& SQUEEZE_RIGHT, myThid ) |
345 |
|
|
WRITE(msgBuf,'(A)') |
346 |
|
|
&' // =======================================================' |
347 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
348 |
|
|
& SQUEEZE_RIGHT, myThid ) |
349 |
|
|
_END_MASTER( myThid ) |
350 |
|
|
C reset and start again |
351 |
|
|
totalJFNKtimeSteps = 0 |
352 |
|
|
totalNewtonIters = 0 |
353 |
|
|
totalKrylovIters = 0 |
354 |
|
|
totalKrylovFails = 0 |
355 |
|
|
totalNewtonFails = 0 |
356 |
|
|
ENDIF |
357 |
|
|
|
358 |
|
|
C Print more debugging information |
359 |
mlosch |
1.1 |
IF ( debugLevel.GE.debLevA ) THEN |
360 |
|
|
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
361 |
mlosch |
1.5 |
_BEGIN_MASTER( myThid ) |
362 |
mlosch |
1.1 |
WRITE(msgBuf,'(A,I10)') |
363 |
|
|
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
364 |
mlosch |
1.5 |
& myIter+1 |
365 |
mlosch |
1.1 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
366 |
|
|
& SQUEEZE_RIGHT, myThid ) |
367 |
mlosch |
1.5 |
_END_MASTER( myThid ) |
368 |
mlosch |
1.1 |
ENDIF |
369 |
mlosch |
1.5 |
IF ( krylovFails .GT. 0 ) THEN |
370 |
|
|
_BEGIN_MASTER( myThid ) |
371 |
mlosch |
1.1 |
WRITE(msgBuf,'(A,I4,A,I10)') |
372 |
|
|
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
373 |
mlosch |
1.5 |
& krylovFails, ' times in timestep ', myIter+1 |
374 |
mlosch |
1.1 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
375 |
|
|
& SQUEEZE_RIGHT, myThid ) |
376 |
mlosch |
1.5 |
_END_MASTER( myThid ) |
377 |
mlosch |
1.1 |
ENDIF |
378 |
mlosch |
1.5 |
_BEGIN_MASTER( myThid ) |
379 |
|
|
WRITE(msgBuf,'(A,I6,A,I10)') |
380 |
mlosch |
1.1 |
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
381 |
mlosch |
1.5 |
& totalKrylovItersLoc, ' in timestep ', myIter+1 |
382 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
383 |
|
|
& SQUEEZE_RIGHT, myThid ) |
384 |
|
|
_END_MASTER( myThid ) |
385 |
mlosch |
1.1 |
ENDIF |
386 |
|
|
|
387 |
|
|
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
388 |
|
|
|
389 |
|
|
RETURN |
390 |
|
|
END |