/[MITgcm]/MITgcm/pkg/seaice/seaice_jfnk.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_jfnk.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.10 - (hide annotations) (download)
Mon Nov 26 08:04:50 2012 UTC (12 years, 7 months ago) by mlosch
Branch: MAIN
Changes since 1.9: +6 -8 lines
  - remove unused field pressPre from jfnk solver

1 mlosch 1.10 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jfnk.F,v 1.9 2012/11/12 09:46:38 mlosch Exp $
2 mlosch 1.1 C $Name: $
3    
4     #include "SEAICE_OPTIONS.h"
5    
6     CBOP
7     C !ROUTINE: SEAICE_JFNK
8     C !INTERFACE:
9     SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid )
10    
11     C !DESCRIPTION: \bv
12     C *==========================================================*
13     C | SUBROUTINE SEAICE_JFKF
14     C | o Ice dynamics using a Jacobian-free Newton-Krylov solver
15     C | following J.-F. Lemieux et al. Improving the numerical
16     C | convergence of viscous-plastic sea ice models with the
17     C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229,
18     C | 2840-2852 (2010).
19     C | o The logic follows JFs code.
20     C *==========================================================*
21     C | written by Martin Losch, Oct 2012
22     C *==========================================================*
23     C \ev
24    
25     C !USES:
26     IMPLICIT NONE
27    
28     C === Global variables ===
29     #include "SIZE.h"
30     #include "EEPARAMS.h"
31     #include "PARAMS.h"
32     #include "DYNVARS.h"
33     #include "GRID.h"
34     #include "SEAICE_SIZE.h"
35     #include "SEAICE_PARAMS.h"
36     #include "SEAICE.h"
37    
38     #ifdef ALLOW_AUTODIFF_TAMC
39     # include "tamc.h"
40     #endif
41    
42     C !INPUT/OUTPUT PARAMETERS:
43     C === Routine arguments ===
44     C myTime :: Simulation time
45     C myIter :: Simulation timestep number
46     C myThid :: my Thread Id. number
47     _RL myTime
48     INTEGER myIter
49     INTEGER myThid
50    
51     #if ( (defined SEAICE_CGRID) && \
52     (defined SEAICE_ALLOW_JFNK) && \
53     (defined SEAICE_ALLOW_DYNAMICS) )
54 mlosch 1.5 C !FUNCTIONS:
55     LOGICAL DIFFERENT_MULTIPLE
56     EXTERNAL DIFFERENT_MULTIPLE
57 mlosch 1.1
58     C i,j,bi,bj :: loop indices
59     INTEGER i,j,bi,bj
60     C loop indices
61 mlosch 1.5 INTEGER newtonIter
62     INTEGER krylovIter, krylovFails
63     INTEGER totalKrylovItersLoc
64     C FGMRES flag that determines amount of output messages of fgmres
65     INTEGER iOutFGMRES
66     C FGMRES flag that indicates what fgmres wants us to do next
67 mlosch 1.1 INTEGER iCode
68     _RL JFNKresidual, JFNKresidualTile(nSx,nSy)
69     _RL JFNKresidualKm1
70     C parameters to compute convergence criterion
71     _RL phi_e, alp_e, JFNKgamma_lin
72     _RL FGMRESeps
73     _RL JFNKtol
74     C
75     _RL recip_deltaT
76     LOGICAL JFNKconverged, krylovConverged
77 mlosch 1.9 LOGICAL writeNow
78 mlosch 1.1 CHARACTER*(MAX_LEN_MBUF) msgBuf
79     C
80     C u/vIceRes :: residual of sea-ice momentum equations
81     _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
82     _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
83     C du/vIce :: ice velocity increment to be added to u/vIce
84     _RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
85     _RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
86     C precomputed (= constant per Newton iteration) versions of
87 mlosch 1.2 C zeta, eta, and DWATN, press
88     _RL zetaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
89     _RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
90 mlosch 1.8 _RL etaZPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
91 mlosch 1.2 _RL dwatPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
92 mlosch 1.1 CEOP
93    
94     C Initialise
95 mlosch 1.5 newtonIter = 0
96     krylovFails = 0
97     totalKrylovItersLoc = 0
98     JFNKconverged = .FALSE.
99     JFNKtol = 0. _d 0
100     JFNKresidual = 0. _d 0
101     JFNKresidualKm1 = 0. _d 0
102     FGMRESeps = 0. _d 0
103     recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn
104    
105     iOutFGMRES=0
106     C iOutFgmres=1 gives a little bit of output
107     IF ( debugLevel.GE.debLevA .AND.
108     & DIFFERENT_MULTIPLE( SEAICE_monFreq, myTime, deltaTClock ) )
109     & iOutFGMRES=1
110    
111 mlosch 1.1 C
112     DO bj=myByLo(myThid),myByHi(myThid)
113     DO bi=myBxLo(myThid),myBxHi(myThid)
114     DO J=1-Oly,sNy+Oly
115     DO I=1-Olx,sNx+Olx
116     uIceRes(I,J,bi,bj) = 0. _d 0
117     vIceRes(I,J,bi,bj) = 0. _d 0
118     duIce (I,J,bi,bj) = 0. _d 0
119     dvIce (I,J,bi,bj) = 0. _d 0
120     uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj)
121     vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj)
122     ENDDO
123     ENDDO
124     C Compute things that do no change during the Newton iteration:
125     C sea-surface tilt and wind stress:
126     C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT
127     DO J=1-Oly,sNy+Oly
128     DO I=1-Olx,sNx+Olx
129     FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj)
130     & + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT
131     FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj)
132     & + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT
133     ENDDO
134     ENDDO
135     ENDDO
136     ENDDO
137     C Start nonlinear Newton iteration: outer loop iteration
138     DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND.
139     & .NOT.JFNKconverged )
140     newtonIter = newtonIter + 1
141     C Compute initial residual F(u), (includes computation of global
142     C variables DWATN, zeta, and eta)
143     CALL SEAICE_CALC_RESIDUAL(
144     I uIce, vIce,
145     O uIceRes, vIceRes,
146     I newtonIter, 0, myTime, myIter, myThid )
147 mlosch 1.3 CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid)
148 mlosch 1.1 C local copies of precomputed coefficients that are to stay
149     C constant for the preconditioner
150     DO bj=myByLo(myThid),myByHi(myThid)
151     DO bi=myBxLo(myThid),myBxHi(myThid)
152     DO j=1-Oly,sNy+Oly
153     DO i=1-Olx,sNx+Olx
154 mlosch 1.10 zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj)
155     etaPre(I,J,bi,bj) = eta(I,J,bi,bj)
156     etaZPre(I,J,bi,bj) = etaZ(I,J,bi,bj)
157     dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj)
158 mlosch 1.1 ENDDO
159     ENDDO
160     ENDDO
161     ENDDO
162     C
163     DO bj=myByLo(myThid),myByHi(myThid)
164     DO bi=myBxLo(myThid),myBxHi(myThid)
165     JFNKresidualTile(bi,bj) = 0. _d 0
166     DO J=1,sNy
167     DO I=1,sNx
168     #ifdef CG2D_SINGLECPU_SUM
169     JFNKlocalBuf(I,J,bi,bj) =
170     #else
171     JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) +
172     #endif
173     & uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) +
174     & vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj)
175     ENDDO
176     ENDDO
177     ENDDO
178     ENDDO
179     JFNKresidual = 0. _d 0
180     #ifdef CG2D_SINGLECPU_SUM
181     CALL GLOBAL_SUM_SINGLECPU_RL(
182     & JFNKlocalBuf,JFNKresidual, 0, 0, myThid)
183     #else
184     CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid )
185     #endif
186     JFNKresidual = SQRT(JFNKresidual)
187     C compute convergence criterion for linear preconditioned FGMRES
188     JFNKgamma_lin = JFNKgamma_lin_max
189     IF ( newtonIter.GT.1.AND.newtonIter.LE.100
190     & .AND.JFNKresidual.LT.JFNKres_t ) THEN
191     C Eisenstat, 1996, equ.(2.6)
192     phi_e = 1. _d 0
193     alp_e = 1. _d 0
194     JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e
195     JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin)
196     JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin)
197     ENDIF
198     C save the residual for the next iteration
199     JFNKresidualKm1 = JFNKresidual
200     C
201     C The Krylov iteration using FGMRES, the preconditioner is LSOR
202     C for now. The code is adapted from SEAICE_LSR, but heavily stripped
203     C down.
204     C krylovIter is mapped into "its" in seaice_fgmres and is incremented
205     C in that routine
206     krylovIter = 0
207     iCode = 0
208     IF ( debugLevel.GE.debLevA ) THEN
209 mlosch 1.5 _BEGIN_MASTER( myThid )
210 mlosch 1.1 WRITE(msgBuf,'(2A,2(1XI6),2E12.5)')
211     & ' S/R SEAICE_JFNK: newtonIter,',
212     & ' total newtonIter, JFNKgamma_lin, initial norm = ',
213 mlosch 1.3 & newtonIter,SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
214 mlosch 1.1 & JFNKgamma_lin, JFNKresidual
215     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
216     & SQUEEZE_RIGHT, myThid )
217 mlosch 1.5 _END_MASTER( myThid )
218 mlosch 1.1 ENDIF
219     C
220     JFNKconverged = JFNKresidual.LT.JFNKtol
221     C
222     C do Krylov loop only if convergence is not reached
223     C
224     IF ( .NOT.JFNKconverged ) THEN
225     C
226     C start Krylov iteration (FGMRES)
227     C
228     krylovConverged = .FALSE.
229     FGMRESeps = JFNKgamma_lin * JFNKresidual
230     DO WHILE ( .NOT.krylovConverged )
231     C solution vector sol = du/vIce
232     C residual vector (rhs) Fu = u/vIceRes
233     C output work vectors wk1, -> input work vector wk2
234     C
235     CALL SEAICE_FGMRES_DRIVER(
236     I uIceRes, vIceRes,
237     U duIce, dvIce, iCode,
238 mlosch 1.5 I FGMRESeps, iOutFGMRES,
239 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
240     C FGMRES returns iCode either asking for an new preconditioned vector
241     C or product of matrix (Jacobian) times vector. For iCode = 0, terminate
242     C iteration
243     IF (iCode.EQ.1) THEN
244 mlosch 1.7 C Call preconditioner
245     IF ( SOLV_MAX_ITERS .GT. 0 )
246     & CALL SEAICE_PRECONDITIONER(
247 mlosch 1.1 U duIce, dvIce,
248 mlosch 1.10 I zetaPre, etaPre, etaZpre, dwatPre,
249 mlosch 1.1 I newtonIter, krylovIter, myTime, myIter, myThid )
250     ELSEIF (iCode.GE.2) THEN
251     C Compute Jacobian times vector
252     CALL SEAICE_JACVEC(
253     I uIce, vIce, uIceRes, vIceRes,
254     U duIce, dvIce,
255     I newtonIter, krylovIter, myTime, myIter, myThid )
256     ENDIF
257     krylovConverged = iCode.EQ.0
258     C End of Krylov iterate
259     ENDDO
260 mlosch 1.5 totalKrylovItersLoc = totalKrylovItersLoc + krylovIter
261 mlosch 1.1 C some output diagnostics
262     IF ( debugLevel.GE.debLevA ) THEN
263 mlosch 1.5 _BEGIN_MASTER( myThid )
264 mlosch 1.1 WRITE(msgBuf,'(3(A,I6))')
265     & ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter,
266 mlosch 1.3 & ' / ', SEAICEnewtonIterMax*(myIter-nIter0)+newtonIter,
267 mlosch 1.1 & ', Nb. of FGMRES iterations = ', krylovIter
268     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
269     & SQUEEZE_RIGHT, myThid )
270 mlosch 1.5 _END_MASTER( myThid )
271 mlosch 1.1 ENDIF
272     IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN
273 mlosch 1.5 krylovFails = krylovFails + 1
274 mlosch 1.1 ENDIF
275     C Update linear solution vector and return to Newton iteration
276     DO bj=myByLo(myThid),myByHi(myThid)
277     DO bi=myBxLo(myThid),myBxHi(myThid)
278     DO J=1-Oly,sNy+Oly
279     DO I=1-Olx,sNx+Olx
280     uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj)
281     vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj)
282 mlosch 1.4 C reset du/vIce here instead of setting sol = 0 in seaice_fgmres_driver
283     duIce(I,J,bi,bj)= 0. _d 0
284     dvIce(I,J,bi,bj)= 0. _d 0
285 mlosch 1.1 ENDDO
286     ENDDO
287     ENDDO
288     ENDDO
289     C Set the stopping criterion for the Newton iteration
290     IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual
291     ENDIF
292     C end of Newton iterate
293     ENDDO
294 mlosch 1.5 C
295     C-- Output diagnostics
296     C
297 mlosch 1.6 IF ( SEAICE_monFreq .GT. 0. _d 0 ) THEN
298 mlosch 1.5 C Count iterations
299 mlosch 1.6 totalJFNKtimeSteps = totalJFNKtimeSteps + 1
300     totalNewtonIters = totalNewtonIters + newtonIter
301     totalKrylovIters = totalKrylovIters + totalKrylovItersLoc
302 mlosch 1.5 C Record failure
303 mlosch 1.6 totalKrylovFails = totalKrylovFails + krylovFails
304     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
305     totalNewtonFails = totalNewtonFails + 1
306     ENDIF
307 mlosch 1.5 ENDIF
308     C Decide whether it is time to dump and reset the counter
309 mlosch 1.9 writeNow = DIFFERENT_MULTIPLE(SEAICE_monFreq,
310     & myTime+deltaTClock, deltaTClock)
311     #ifdef ALLOW_CAL
312     IF ( useCAL ) THEN
313     CALL CAL_TIME2DUMP(
314     I zeroRL, SEAICE_monFreq, deltaTClock,
315     U writeNow,
316     I myTime+deltaTclock, myIter+1, myThid )
317     ENDIF
318     #endif
319     IF ( writeNow ) THEN
320 mlosch 1.5 _BEGIN_MASTER( myThid )
321     WRITE(msgBuf,'(A)')
322     &' // ======================================================='
323     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
324     & SQUEEZE_RIGHT, myThid )
325     WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
326     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
327     & SQUEEZE_RIGHT, myThid )
328     WRITE(msgBuf,'(A)')
329     &' // ======================================================='
330     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
331     & SQUEEZE_RIGHT, myThid )
332     WRITE(msgBuf,'(A,I10)')
333     & ' %JFNK_MON: time step = ', myIter+1
334     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
335     & SQUEEZE_RIGHT, myThid )
336     WRITE(msgBuf,'(A,I10)')
337     & ' %JFNK_MON: Nb. of time steps = ', totalJFNKtimeSteps
338     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
339     & SQUEEZE_RIGHT, myThid )
340     WRITE(msgBuf,'(A,I10)')
341     & ' %JFNK_MON: Nb. of Newton steps = ', totalNewtonIters
342     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
343     & SQUEEZE_RIGHT, myThid )
344     WRITE(msgBuf,'(A,I10)')
345     & ' %JFNK_MON: Nb. of Krylov steps = ', totalKrylovIters
346     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
347     & SQUEEZE_RIGHT, myThid )
348     WRITE(msgBuf,'(A,I10)')
349     & ' %JFNK_MON: Nb. of Newton failures = ', totalNewtonFails
350     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
351     & SQUEEZE_RIGHT, myThid )
352     WRITE(msgBuf,'(A,I10)')
353     & ' %JFNK_MON: Nb. of Krylov failures = ', totalKrylovFails
354     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
355     & SQUEEZE_RIGHT, myThid )
356     WRITE(msgBuf,'(A)')
357     &' // ======================================================='
358     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
359     & SQUEEZE_RIGHT, myThid )
360     WRITE(msgBuf,'(A)') ' // Begin JFNK statistics'
361     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
362     & SQUEEZE_RIGHT, myThid )
363     WRITE(msgBuf,'(A)')
364     &' // ======================================================='
365     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
366     & SQUEEZE_RIGHT, myThid )
367     _END_MASTER( myThid )
368     C reset and start again
369     totalJFNKtimeSteps = 0
370     totalNewtonIters = 0
371     totalKrylovIters = 0
372     totalKrylovFails = 0
373     totalNewtonFails = 0
374     ENDIF
375    
376     C Print more debugging information
377 mlosch 1.1 IF ( debugLevel.GE.debLevA ) THEN
378     IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN
379 mlosch 1.5 _BEGIN_MASTER( myThid )
380 mlosch 1.1 WRITE(msgBuf,'(A,I10)')
381     & ' S/R SEAICE_JFNK: JFNK did not converge in timestep ',
382 mlosch 1.5 & myIter+1
383 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
384     & SQUEEZE_RIGHT, myThid )
385 mlosch 1.5 _END_MASTER( myThid )
386 mlosch 1.1 ENDIF
387 mlosch 1.5 IF ( krylovFails .GT. 0 ) THEN
388     _BEGIN_MASTER( myThid )
389 mlosch 1.1 WRITE(msgBuf,'(A,I4,A,I10)')
390     & ' S/R SEAICE_JFNK: FGMRES did not converge ',
391 mlosch 1.5 & krylovFails, ' times in timestep ', myIter+1
392 mlosch 1.1 CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
393     & SQUEEZE_RIGHT, myThid )
394 mlosch 1.5 _END_MASTER( myThid )
395 mlosch 1.1 ENDIF
396 mlosch 1.5 _BEGIN_MASTER( myThid )
397     WRITE(msgBuf,'(A,I6,A,I10)')
398 mlosch 1.1 & ' S/R SEAICE_JFNK: Total number FGMRES iterations = ',
399 mlosch 1.5 & totalKrylovItersLoc, ' in timestep ', myIter+1
400     CALL PRINT_MESSAGE( msgBuf, standardMessageUnit,
401     & SQUEEZE_RIGHT, myThid )
402     _END_MASTER( myThid )
403 mlosch 1.1 ENDIF
404    
405     #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */
406    
407     RETURN
408     END

  ViewVC Help
Powered by ViewVC 1.1.22