1 |
mlosch |
1.1 |
C $Header: $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
CBOP |
7 |
|
|
C !ROUTINE: SEAICE_JFNK |
8 |
|
|
C !INTERFACE: |
9 |
|
|
SUBROUTINE SEAICE_JFNK( myTime, myIter, myThid ) |
10 |
|
|
|
11 |
|
|
C !DESCRIPTION: \bv |
12 |
|
|
C *==========================================================* |
13 |
|
|
C | SUBROUTINE SEAICE_JFKF |
14 |
|
|
C | o Ice dynamics using a Jacobian-free Newton-Krylov solver |
15 |
|
|
C | following J.-F. Lemieux et al. Improving the numerical |
16 |
|
|
C | convergence of viscous-plastic sea ice models with the |
17 |
|
|
C | Jacobian-free Newton-Krylov method. J. Comp. Phys. 229, |
18 |
|
|
C | 2840-2852 (2010). |
19 |
|
|
C | o The logic follows JFs code. |
20 |
|
|
C *==========================================================* |
21 |
|
|
C | written by Martin Losch, Oct 2012 |
22 |
|
|
C *==========================================================* |
23 |
|
|
C \ev |
24 |
|
|
|
25 |
|
|
C !USES: |
26 |
|
|
IMPLICIT NONE |
27 |
|
|
|
28 |
|
|
C === Global variables === |
29 |
|
|
#include "SIZE.h" |
30 |
|
|
#include "EEPARAMS.h" |
31 |
|
|
#include "PARAMS.h" |
32 |
|
|
#include "DYNVARS.h" |
33 |
|
|
#include "GRID.h" |
34 |
|
|
#include "SEAICE_SIZE.h" |
35 |
|
|
#include "SEAICE_PARAMS.h" |
36 |
|
|
#include "SEAICE.h" |
37 |
|
|
|
38 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
39 |
|
|
# include "tamc.h" |
40 |
|
|
#endif |
41 |
|
|
|
42 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
43 |
|
|
C === Routine arguments === |
44 |
|
|
C myTime :: Simulation time |
45 |
|
|
C myIter :: Simulation timestep number |
46 |
|
|
C myThid :: my Thread Id. number |
47 |
|
|
_RL myTime |
48 |
|
|
INTEGER myIter |
49 |
|
|
INTEGER myThid |
50 |
|
|
|
51 |
|
|
#if ( (defined SEAICE_CGRID) && \ |
52 |
|
|
(defined SEAICE_ALLOW_JFNK) && \ |
53 |
|
|
(defined SEAICE_ALLOW_DYNAMICS) ) |
54 |
|
|
|
55 |
|
|
C i,j,bi,bj :: loop indices |
56 |
|
|
INTEGER i,j,bi,bj |
57 |
|
|
C loop indices |
58 |
|
|
INTEGER newtonIter, newtonIterFail |
59 |
|
|
INTEGER krylovIter, krylovIterFail |
60 |
|
|
INTEGER totalKrylovIter |
61 |
|
|
C FGMRES flag that indicates what to do next |
62 |
|
|
INTEGER iCode |
63 |
|
|
_RL JFNKresidual, JFNKresidualTile(nSx,nSy) |
64 |
|
|
_RL JFNKresidualKm1 |
65 |
|
|
C parameters to compute convergence criterion |
66 |
|
|
_RL phi_e, alp_e, JFNKgamma_lin |
67 |
|
|
_RL FGMRESeps |
68 |
|
|
_RL JFNKtol |
69 |
|
|
C |
70 |
|
|
_RL recip_deltaT |
71 |
|
|
LOGICAL JFNKconverged, krylovConverged |
72 |
|
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
73 |
|
|
C |
74 |
|
|
C u/vIceRes :: residual of sea-ice momentum equations |
75 |
|
|
_RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
76 |
|
|
_RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
77 |
|
|
C du/vIce :: ice velocity increment to be added to u/vIce |
78 |
|
|
_RL duIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
79 |
|
|
_RL dvIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
80 |
|
|
C precomputed (= constant per Newton iteration) versions of |
81 |
|
|
C zeta, eta, and DWATN |
82 |
|
|
_RL zetaPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
83 |
|
|
_RL etaPre (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
84 |
|
|
_RL dwatPre(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
85 |
|
|
CEOP |
86 |
|
|
|
87 |
|
|
C Initialise |
88 |
|
|
newtonIter = 0 |
89 |
|
|
newtonIterFail = 0 |
90 |
|
|
krylovIterFail = 0 |
91 |
|
|
totalKrylovIter = 0 |
92 |
|
|
JFNKconverged = .FALSE. |
93 |
|
|
JFNKtol = 0. _d 0 |
94 |
|
|
JFNKresidual = 0. _d 0 |
95 |
|
|
JFNKresidualKm1 = 0. _d 0 |
96 |
|
|
FGMRESeps = 0. _d 0 |
97 |
|
|
recip_deltaT = 1. _d 0 / SEAICE_deltaTdyn |
98 |
|
|
C |
99 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
100 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
101 |
|
|
DO J=1-Oly,sNy+Oly |
102 |
|
|
DO I=1-Olx,sNx+Olx |
103 |
|
|
uIceRes(I,J,bi,bj) = 0. _d 0 |
104 |
|
|
vIceRes(I,J,bi,bj) = 0. _d 0 |
105 |
|
|
duIce (I,J,bi,bj) = 0. _d 0 |
106 |
|
|
dvIce (I,J,bi,bj) = 0. _d 0 |
107 |
|
|
uIceNm1(I,J,bi,bj) = uIce(I,J,bi,bj) |
108 |
|
|
vIceNm1(I,J,bi,bj) = vIce(I,J,bi,bj) |
109 |
|
|
ENDDO |
110 |
|
|
ENDDO |
111 |
|
|
C Compute things that do no change during the Newton iteration: |
112 |
|
|
C sea-surface tilt and wind stress: |
113 |
|
|
C FORCEX/Y0 - mass*(u/vIceNm1)/deltaT |
114 |
|
|
DO J=1-Oly,sNy+Oly |
115 |
|
|
DO I=1-Olx,sNx+Olx |
116 |
|
|
FORCEX(I,J,bi,bj) = FORCEX0(I,J,bi,bj) |
117 |
|
|
& + seaiceMassU(I,J,bi,bj)*uIceNm1(I,J,bi,bj)*recip_deltaT |
118 |
|
|
FORCEY(I,J,bi,bj) = FORCEY0(I,J,bi,bj) |
119 |
|
|
& + seaiceMassV(I,J,bi,bj)*vIceNm1(I,J,bi,bj)*recip_deltaT |
120 |
|
|
ENDDO |
121 |
|
|
ENDDO |
122 |
|
|
ENDDO |
123 |
|
|
ENDDO |
124 |
|
|
C Start nonlinear Newton iteration: outer loop iteration |
125 |
|
|
DO WHILE ( newtonIter.LT.SEAICEnewtonIterMax .AND. |
126 |
|
|
& .NOT.JFNKconverged ) |
127 |
|
|
newtonIter = newtonIter + 1 |
128 |
|
|
C Compute initial residual F(u), (includes computation of global |
129 |
|
|
C variables DWATN, zeta, and eta) |
130 |
|
|
CALL SEAICE_CALC_RESIDUAL( |
131 |
|
|
I uIce, vIce, |
132 |
|
|
O uIceRes, vIceRes, |
133 |
|
|
I newtonIter, 0, myTime, myIter, myThid ) |
134 |
|
|
C local copies of precomputed coefficients that are to stay |
135 |
|
|
C constant for the preconditioner |
136 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
137 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
138 |
|
|
DO j=1-Oly,sNy+Oly |
139 |
|
|
DO i=1-Olx,sNx+Olx |
140 |
|
|
zetaPre(I,J,bi,bj) = zeta(I,J,bi,bj) |
141 |
|
|
etaPre(I,J,bi,bj) = eta(I,J,bi,bj) |
142 |
|
|
dwatPre(I,J,bi,bj) = DWATN(I,J,bi,bj) |
143 |
|
|
ENDDO |
144 |
|
|
ENDDO |
145 |
|
|
ENDDO |
146 |
|
|
ENDDO |
147 |
|
|
C |
148 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
149 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
150 |
|
|
JFNKresidualTile(bi,bj) = 0. _d 0 |
151 |
|
|
DO J=1,sNy |
152 |
|
|
DO I=1,sNx |
153 |
|
|
#ifdef CG2D_SINGLECPU_SUM |
154 |
|
|
JFNKlocalBuf(I,J,bi,bj) = |
155 |
|
|
#else |
156 |
|
|
JFNKresidualTile(bi,bj) = JFNKresidualTile(bi,bj) + |
157 |
|
|
#endif |
158 |
|
|
& uIceRes(I,J,bi,bj)*uIceRes(I,J,bi,bj) + |
159 |
|
|
& vIceRes(I,J,bi,bj)*vIceRes(I,J,bi,bj) |
160 |
|
|
ENDDO |
161 |
|
|
ENDDO |
162 |
|
|
ENDDO |
163 |
|
|
ENDDO |
164 |
|
|
JFNKresidual = 0. _d 0 |
165 |
|
|
#ifdef CG2D_SINGLECPU_SUM |
166 |
|
|
CALL GLOBAL_SUM_SINGLECPU_RL( |
167 |
|
|
& JFNKlocalBuf,JFNKresidual, 0, 0, myThid) |
168 |
|
|
#else |
169 |
|
|
CALL GLOBAL_SUM_TILE_RL( JFNKresidualTile,JFNKresidual,myThid ) |
170 |
|
|
#endif |
171 |
|
|
JFNKresidual = SQRT(JFNKresidual) |
172 |
|
|
C compute convergence criterion for linear preconditioned FGMRES |
173 |
|
|
JFNKgamma_lin = JFNKgamma_lin_max |
174 |
|
|
IF ( newtonIter.GT.1.AND.newtonIter.LE.100 |
175 |
|
|
& .AND.JFNKresidual.LT.JFNKres_t ) THEN |
176 |
|
|
C Eisenstat, 1996, equ.(2.6) |
177 |
|
|
phi_e = 1. _d 0 |
178 |
|
|
alp_e = 1. _d 0 |
179 |
|
|
JFNKgamma_lin = phi_e*( JFNKresidual/JFNKresidualKm1 )**alp_e |
180 |
|
|
JFNKgamma_lin = min(JFNKgamma_lin_max, JFNKgamma_lin) |
181 |
|
|
JFNKgamma_lin = max(JFNKgamma_lin_min, JFNKgamma_lin) |
182 |
|
|
ENDIF |
183 |
|
|
C save the residual for the next iteration |
184 |
|
|
JFNKresidualKm1 = JFNKresidual |
185 |
|
|
C |
186 |
|
|
C The Krylov iteration using FGMRES, the preconditioner is LSOR |
187 |
|
|
C for now. The code is adapted from SEAICE_LSR, but heavily stripped |
188 |
|
|
C down. |
189 |
|
|
C krylovIter is mapped into "its" in seaice_fgmres and is incremented |
190 |
|
|
C in that routine |
191 |
|
|
krylovIter = 0 |
192 |
|
|
iCode = 0 |
193 |
|
|
IF ( debugLevel.GE.debLevA ) THEN |
194 |
|
|
WRITE(msgBuf,'(2A,2(1XI6),2E12.5)') |
195 |
|
|
& ' S/R SEAICE_JFNK: newtonIter,', |
196 |
|
|
& ' total newtonIter, JFNKgamma_lin, initial norm = ', |
197 |
|
|
& newtonIter, SEAICEnewtonIterMax*myIter+newtonIter, |
198 |
|
|
& JFNKgamma_lin, JFNKresidual |
199 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
200 |
|
|
& SQUEEZE_RIGHT, myThid ) |
201 |
|
|
ENDIF |
202 |
|
|
C |
203 |
|
|
JFNKconverged = JFNKresidual.LT.JFNKtol |
204 |
|
|
C |
205 |
|
|
C do Krylov loop only if convergence is not reached |
206 |
|
|
C |
207 |
|
|
IF ( .NOT.JFNKconverged ) THEN |
208 |
|
|
C |
209 |
|
|
C start Krylov iteration (FGMRES) |
210 |
|
|
C |
211 |
|
|
krylovConverged = .FALSE. |
212 |
|
|
FGMRESeps = JFNKgamma_lin * JFNKresidual |
213 |
|
|
DO WHILE ( .NOT.krylovConverged ) |
214 |
|
|
C solution vector sol = du/vIce |
215 |
|
|
C residual vector (rhs) Fu = u/vIceRes |
216 |
|
|
C output work vectors wk1, -> input work vector wk2 |
217 |
|
|
C |
218 |
|
|
CALL EXCH_UV_XY_RL( uIceRes, vIceRes,.TRUE.,myThid) |
219 |
|
|
CALL EXCH_UV_XY_RL( duIce, dvIce,.TRUE.,myThid) |
220 |
|
|
CALL SEAICE_FGMRES_DRIVER( |
221 |
|
|
I uIceRes, vIceRes, |
222 |
|
|
U duIce, dvIce, iCode, |
223 |
|
|
I FGMRESeps, |
224 |
|
|
I newtonIter, krylovIter, myTime, myIter, myThid ) |
225 |
|
|
C FGMRES returns iCode either asking for an new preconditioned vector |
226 |
|
|
C or product of matrix (Jacobian) times vector. For iCode = 0, terminate |
227 |
|
|
C iteration |
228 |
|
|
IF (iCode.EQ.1) THEN |
229 |
|
|
C Call preconditioner |
230 |
|
|
CALL SEAICE_PRECONDITIONER( |
231 |
|
|
U duIce, dvIce, |
232 |
|
|
I zetaPre, etaPre, dwatPre, |
233 |
|
|
I newtonIter, krylovIter, myTime, myIter, myThid ) |
234 |
|
|
ELSEIF (iCode.GE.2) THEN |
235 |
|
|
C Compute Jacobian times vector |
236 |
|
|
CALL SEAICE_JACVEC( |
237 |
|
|
I uIce, vIce, uIceRes, vIceRes, |
238 |
|
|
U duIce, dvIce, |
239 |
|
|
I newtonIter, krylovIter, myTime, myIter, myThid ) |
240 |
|
|
ENDIF |
241 |
|
|
krylovConverged = iCode.EQ.0 |
242 |
|
|
C End of Krylov iterate |
243 |
|
|
ENDDO |
244 |
|
|
totalKrylovIter = totalKrylovIter + krylovIter |
245 |
|
|
C some output diagnostics |
246 |
|
|
IF ( debugLevel.GE.debLevA ) THEN |
247 |
|
|
WRITE(msgBuf,'(3(A,I6))') |
248 |
|
|
& ' S/R SEAICE_JFNK: Newton iterate / total = ', newtonIter, |
249 |
|
|
& ' / ', SEAICEnewtonIterMax*myIter+newtonIter, |
250 |
|
|
& ', Nb. of FGMRES iterations = ', krylovIter |
251 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
252 |
|
|
& SQUEEZE_RIGHT, myThid ) |
253 |
|
|
ENDIF |
254 |
|
|
IF ( krylovIter.EQ.SEAICEkrylovIterMax ) THEN |
255 |
|
|
krylovIterFail = krylovIterFail + 1 |
256 |
|
|
ENDIF |
257 |
|
|
C Update linear solution vector and return to Newton iteration |
258 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
259 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
260 |
|
|
DO J=1-Oly,sNy+Oly |
261 |
|
|
DO I=1-Olx,sNx+Olx |
262 |
|
|
uIce(I,J,bi,bj) = uIce(I,J,bi,bj)+duIce(I,J,bi,bj) |
263 |
|
|
vIce(I,J,bi,bj) = vIce(I,J,bi,bj)+dvIce(I,J,bi,bj) |
264 |
|
|
ENDDO |
265 |
|
|
ENDDO |
266 |
|
|
ENDDO |
267 |
|
|
ENDDO |
268 |
|
|
C Set the stopping criterion for the Newton iteration |
269 |
|
|
IF ( newtonIter .EQ. 1 ) JFNKtol=JFNKgamma_nonlin*JFNKresidual |
270 |
|
|
ENDIF |
271 |
|
|
C end of Newton iterate |
272 |
|
|
ENDDO |
273 |
|
|
C some output diagnostics |
274 |
|
|
IF ( debugLevel.GE.debLevA ) THEN |
275 |
|
|
C Record failure |
276 |
|
|
IF ( newtonIter .EQ. SEAICEnewtonIterMax ) THEN |
277 |
|
|
newtonIterFail = newtonIterFail + 1 |
278 |
|
|
WRITE(msgBuf,'(A,I10)') |
279 |
|
|
& ' S/R SEAICE_JFNK: JFNK did not converge in timestep ', |
280 |
|
|
& myIter |
281 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
282 |
|
|
& SQUEEZE_RIGHT, myThid ) |
283 |
|
|
ENDIF |
284 |
|
|
IF ( krylovIterFail .GT. 0 ) THEN |
285 |
|
|
WRITE(msgBuf,'(A,I4,A,I10)') |
286 |
|
|
& ' S/R SEAICE_JFNK: FGMRES did not converge ', |
287 |
|
|
& krylovIterFail, ' times in timestep ', myIter |
288 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
289 |
|
|
& SQUEEZE_RIGHT, myThid ) |
290 |
|
|
ENDIF |
291 |
|
|
WRITE(msgBuf,'(A,I6)') |
292 |
|
|
& ' S/R SEAICE_JFNK: Total number FGMRES iterations = ', |
293 |
|
|
& totalKrylovIter |
294 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
295 |
|
|
& SQUEEZE_RIGHT, myThid ) |
296 |
|
|
|
297 |
|
|
ENDIF |
298 |
|
|
|
299 |
|
|
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID and SEAICE_ALLOW_JFNK */ |
300 |
|
|
|
301 |
|
|
RETURN |
302 |
|
|
END |