| 1 | 
mlosch | 
1.5 | 
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_jacvec.F,v 1.4 2013/02/28 17:12:48 mlosch Exp $ | 
| 2 | 
mlosch | 
1.1 | 
C $Name:  $ | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
#include "SEAICE_OPTIONS.h" | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
CBOP | 
| 7 | 
  | 
  | 
C     !ROUTINE: SEAICE_JACVEC | 
| 8 | 
  | 
  | 
C     !INTERFACE: | 
| 9 | 
  | 
  | 
      SUBROUTINE SEAICE_JACVEC(  | 
| 10 | 
  | 
  | 
     I     uIceLoc, vIceLoc, uIceRes, vIceRes, | 
| 11 | 
  | 
  | 
     U     duIce, dvIce,   | 
| 12 | 
  | 
  | 
     I     newtonIter, krylovIter, myTime, myIter, myThid ) | 
| 13 | 
  | 
  | 
 | 
| 14 | 
  | 
  | 
C     !DESCRIPTION: \bv | 
| 15 | 
  | 
  | 
C     *==========================================================* | 
| 16 | 
  | 
  | 
C     | SUBROUTINE SEAICE_JACVEC | 
| 17 | 
  | 
  | 
C     | o For Jacobian-free Newton-Krylov solver compute | 
| 18 | 
  | 
  | 
C     |   Jacobian times vector by finite difference approximation | 
| 19 | 
  | 
  | 
C     *==========================================================* | 
| 20 | 
  | 
  | 
C     | written by Martin Losch, Oct 2012 | 
| 21 | 
  | 
  | 
C     *==========================================================* | 
| 22 | 
  | 
  | 
C     \ev | 
| 23 | 
  | 
  | 
 | 
| 24 | 
  | 
  | 
C     !USES: | 
| 25 | 
  | 
  | 
      IMPLICIT NONE | 
| 26 | 
  | 
  | 
 | 
| 27 | 
  | 
  | 
C     === Global variables === | 
| 28 | 
  | 
  | 
#include "SIZE.h" | 
| 29 | 
  | 
  | 
#include "EEPARAMS.h" | 
| 30 | 
  | 
  | 
#include "PARAMS.h" | 
| 31 | 
  | 
  | 
#include "DYNVARS.h" | 
| 32 | 
  | 
  | 
#include "GRID.h" | 
| 33 | 
  | 
  | 
#include "SEAICE_SIZE.h" | 
| 34 | 
  | 
  | 
#include "SEAICE_PARAMS.h" | 
| 35 | 
  | 
  | 
#include "SEAICE.h" | 
| 36 | 
  | 
  | 
 | 
| 37 | 
  | 
  | 
C     !INPUT/OUTPUT PARAMETERS: | 
| 38 | 
  | 
  | 
C     === Routine arguments === | 
| 39 | 
  | 
  | 
C     myTime :: Simulation time | 
| 40 | 
  | 
  | 
C     myIter :: Simulation timestep number | 
| 41 | 
  | 
  | 
C     myThid :: my Thread Id. number | 
| 42 | 
  | 
  | 
C     newtonIter :: current iterate of Newton iteration | 
| 43 | 
  | 
  | 
C     krylovIter :: current iterate of Krylov iteration | 
| 44 | 
  | 
  | 
      _RL     myTime | 
| 45 | 
  | 
  | 
      INTEGER myIter | 
| 46 | 
  | 
  | 
      INTEGER myThid | 
| 47 | 
  | 
  | 
      INTEGER newtonIter | 
| 48 | 
  | 
  | 
      INTEGER krylovIter | 
| 49 | 
  | 
  | 
C     u/vIceLoc :: local copies of the current ice velocity | 
| 50 | 
  | 
  | 
      _RL uIceLoc(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 51 | 
  | 
  | 
      _RL vIceLoc(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 52 | 
  | 
  | 
C     u/vIceRes :: initial residual of this Newton iterate | 
| 53 | 
  | 
  | 
      _RL uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 54 | 
  | 
  | 
      _RL vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 55 | 
  | 
  | 
C     du/vIce   :: correction of ice velocities | 
| 56 | 
  | 
  | 
      _RL duIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 57 | 
  | 
  | 
      _RL dvIce  (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 58 | 
  | 
  | 
 | 
| 59 | 
mlosch | 
1.5 | 
#ifdef SEAICE_ALLOW_JFNK | 
| 60 | 
mlosch | 
1.1 | 
C     Local variables: | 
| 61 | 
  | 
  | 
      _RL utp     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 62 | 
  | 
  | 
      _RL vtp     (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 63 | 
  | 
  | 
C     u/vIceResP :: residual computed with u/vtp | 
| 64 | 
  | 
  | 
      _RL uIceResP(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 65 | 
  | 
  | 
      _RL vIceResP(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 66 | 
  | 
  | 
 | 
| 67 | 
  | 
  | 
C     i,j,bi,bj :: loop indices | 
| 68 | 
  | 
  | 
      INTEGER i,j,bi,bj | 
| 69 | 
  | 
  | 
      _RL epsilon, reps | 
| 70 | 
  | 
  | 
CEOP | 
| 71 | 
mlosch | 
1.2 | 
C     Instructions for using TAF or TAMC to generate exact Jacobian times | 
| 72 | 
  | 
  | 
C     vector operations: | 
| 73 | 
  | 
  | 
C | 
| 74 | 
  | 
  | 
C     1. make small_f | 
| 75 | 
  | 
  | 
C     2. cat seaice_calc_residual.f seaice_oceandrag_coeffs.f seaice_calc_strainrates.f seaice_calc_viscosities.f seaice_calc_rhs.f seaice_calc_lhs.f > taf_input.f | 
| 76 | 
  | 
  | 
C     3. staf -v1 -forward -toplevel seaice_calc_residual -input uIceLoc,viceLoc -output uIceRes,vIceRes taf_input.f | 
| 77 | 
  | 
  | 
C     4. insert content of taf_input_ftl.f at the end of this file | 
| 78 | 
  | 
  | 
C     5. add the following code and comment out the finite difference code | 
| 79 | 
mlosch | 
1.4 | 
C | 
| 80 | 
  | 
  | 
C     Instruction for using TAF 2.4 and higher (or staf with default -v2 | 
| 81 | 
  | 
  | 
C     starting with version 2.0): | 
| 82 | 
  | 
  | 
C | 
| 83 | 
  | 
  | 
C     1. make small_f | 
| 84 | 
  | 
  | 
C     2. staf -forward -toplevel seaice_calc_residual -input uIceLoc,viceLoc -output uIceRes,vIceRes seaice_calc_residual.f seaice_oceandrag_coeffs.f seaice_calc_strainrates.f seaice_calc_viscosities.f seaice_calc_rhs.f seaice_calc_lhs.f | 
| 85 | 
  | 
  | 
C     3. copy files seaice_*_tl.f to the corresponding seaice_*.f files,  | 
| 86 | 
  | 
  | 
C        e.g. with this bash script: | 
| 87 | 
  | 
  | 
C     for file in `ls seaice_*_tl.f`; do  | 
| 88 | 
  | 
  | 
C       nfile=`echo $file | awk -F_ '{printf "%s_%s_%s.f", $1,$2,$3}'`;  | 
| 89 | 
  | 
  | 
C       \cp -f $file $nfile | 
| 90 | 
  | 
  | 
C     done | 
| 91 | 
  | 
  | 
C     4. add the following code, change "call g_seaice_calc_residual" to "call seaice_calc_residual_tl", and comment out the finite difference code | 
| 92 | 
mlosch | 
1.2 | 
CML      _RL g_duIce(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 93 | 
  | 
  | 
CML      _RL g_dvIce(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 94 | 
  | 
  | 
CML      _RL g_uIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 95 | 
  | 
  | 
CML      _RL g_vIceRes(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 96 | 
  | 
  | 
CML | 
| 97 | 
  | 
  | 
CMLC     Initialise | 
| 98 | 
  | 
  | 
CML      DO bj=myByLo(myThid),myByHi(myThid) | 
| 99 | 
  | 
  | 
CML       DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 100 | 
  | 
  | 
CML        DO J=1-Oly,sNy+Oly | 
| 101 | 
  | 
  | 
CML         DO I=1-Olx,sNx+Olx | 
| 102 | 
  | 
  | 
CML          g_duIce(I,J,bi,bj) = duice(I,J,bi,bj) | 
| 103 | 
  | 
  | 
CML          g_dvIce(I,J,bi,bj) = dvice(I,J,bi,bj) | 
| 104 | 
  | 
  | 
CML          g_uIceRes(I,J,bi,bj) = 0. _d 0 | 
| 105 | 
  | 
  | 
CML          g_vIceRes(I,J,bi,bj) = 0. _d 0 | 
| 106 | 
  | 
  | 
CML          uIceResP(I,J,bi,bj) = 0. _d 0 | 
| 107 | 
  | 
  | 
CML          vIceResP(I,J,bi,bj) = 0. _d 0 | 
| 108 | 
  | 
  | 
CML         ENDDO | 
| 109 | 
  | 
  | 
CML        ENDDO | 
| 110 | 
  | 
  | 
CML       ENDDO | 
| 111 | 
  | 
  | 
CML      ENDDO | 
| 112 | 
  | 
  | 
CML | 
| 113 | 
  | 
  | 
CML      CALL G_SEAICE_CALC_RESIDUAL( uIce, g_duice, vIce,  | 
| 114 | 
  | 
  | 
CML     $g_dvice, uiceresp, g_uiceres, viceresp, g_viceres, newtoniter,  | 
| 115 | 
  | 
  | 
CML     $kryloviter, mytime, myiter, mythid ) | 
| 116 | 
mlosch | 
1.4 | 
CMLCML      For staf -v2 replace the above with the below call  | 
| 117 | 
  | 
  | 
CMLCML      CALL SEAICE_CALC_RESIDUAL_TL( uIce, g_duice, vIce,  | 
| 118 | 
  | 
  | 
CMLCML     $g_dvice, uiceresp, g_uiceres, viceresp, g_viceres, newtoniter,  | 
| 119 | 
  | 
  | 
CMLCML     $kryloviter, mytime, myiter, mythid ) | 
| 120 | 
mlosch | 
1.2 | 
CML | 
| 121 | 
  | 
  | 
CML      DO bj=myByLo(myThid),myByHi(myThid) | 
| 122 | 
  | 
  | 
CML       DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 123 | 
  | 
  | 
CML        DO J=1-Oly,sNy+Oly | 
| 124 | 
  | 
  | 
CML         DO I=1-Olx,sNx+Olx | 
| 125 | 
  | 
  | 
CML          duice(I,J,bi,bj)=g_uiceres(I,J,bi,bj) | 
| 126 | 
  | 
  | 
CML          dvice(I,J,bi,bj)=g_viceres(I,J,bi,bj) | 
| 127 | 
  | 
  | 
CML         ENDDO | 
| 128 | 
  | 
  | 
CML        ENDDO | 
| 129 | 
  | 
  | 
CML       ENDDO | 
| 130 | 
  | 
  | 
CML      ENDDO | 
| 131 | 
  | 
  | 
 | 
| 132 | 
mlosch | 
1.1 | 
C     Initialise | 
| 133 | 
mlosch | 
1.4 | 
      epsilon = SEAICE_JFNKepsilon | 
| 134 | 
mlosch | 
1.1 | 
      reps    = 1. _d 0/epsilon | 
| 135 | 
  | 
  | 
 | 
| 136 | 
  | 
  | 
      DO bj=myByLo(myThid),myByHi(myThid) | 
| 137 | 
  | 
  | 
       DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 138 | 
  | 
  | 
        DO J=1-Oly,sNy+Oly | 
| 139 | 
  | 
  | 
         DO I=1-Olx,sNx+Olx | 
| 140 | 
  | 
  | 
          utp(I,J,bi,bj) = uIce(I,J,bi,bj) + epsilon * duIce(I,J,bi,bj) | 
| 141 | 
  | 
  | 
          vtp(I,J,bi,bj) = vIce(I,J,bi,bj) + epsilon * dvIce(I,J,bi,bj) | 
| 142 | 
  | 
  | 
         ENDDO | 
| 143 | 
  | 
  | 
        ENDDO | 
| 144 | 
  | 
  | 
       ENDDO | 
| 145 | 
  | 
  | 
      ENDDO | 
| 146 | 
  | 
  | 
 | 
| 147 | 
  | 
  | 
C     Compute new residual F(u) | 
| 148 | 
  | 
  | 
      CALL SEAICE_CALC_RESIDUAL( | 
| 149 | 
  | 
  | 
     I     utp, vtp, | 
| 150 | 
  | 
  | 
     O     uIceResP, vIceResP, | 
| 151 | 
  | 
  | 
     I     newtonIter, krylovIter, myTime, myIter, myThid ) | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
C     approximate Jacobian times vector by one-sided finite differences | 
| 154 | 
  | 
  | 
C     and store in du/vIce | 
| 155 | 
  | 
  | 
      DO bj = myByLo(myThid),myByHi(myThid) | 
| 156 | 
  | 
  | 
       DO bi = myBxLo(myThid),myBxHi(myThid) | 
| 157 | 
  | 
  | 
        DO I = 1, sNx | 
| 158 | 
  | 
  | 
         DO J = 1, sNy | 
| 159 | 
  | 
  | 
          duIce(I,J,bi,bj) =  | 
| 160 | 
  | 
  | 
     &         (uIceResP(I,J,bi,bj)-uIceRes(I,J,bi,bj))*reps | 
| 161 | 
  | 
  | 
          dvIce(I,J,bi,bj) = | 
| 162 | 
  | 
  | 
     &         (vIceResP(I,J,bi,bj)-vIceRes(I,J,bi,bj))*reps | 
| 163 | 
  | 
  | 
         ENDDO | 
| 164 | 
  | 
  | 
        ENDDO | 
| 165 | 
  | 
  | 
       ENDDO | 
| 166 | 
  | 
  | 
      ENDDO | 
| 167 | 
  | 
  | 
 | 
| 168 | 
mlosch | 
1.5 | 
#endif /* SEAICE_ALLOW_JFNK */ | 
| 169 | 
mlosch | 
1.1 | 
 | 
| 170 | 
  | 
  | 
      RETURN | 
| 171 | 
  | 
  | 
      END |