/[MITgcm]/MITgcm/pkg/seaice/seaice_growth.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_growth.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download)
Wed Dec 20 12:25:15 2006 UTC (17 years, 4 months ago) by mlosch
Branch: MAIN
Changes since 1.6: +22 -25 lines
o fix multi-category seaice:
 - change cpp flag SEAICE_MULTILEVEL to more meaningful name:
   SEAICE_MULTICATEGORY
 - fix short wave heat flux
o replace field areaLoc by scalar variable

1 mlosch 1.7 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_growth.F,v 1.6 2006/12/19 18:57:10 dimitri Exp $
2 heimbach 1.2 C $Name: $
3 mlosch 1.1
4     #include "SEAICE_OPTIONS.h"
5    
6     CStartOfInterface
7     SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid )
8     C /==========================================================\
9     C | SUBROUTINE seaice_growth |
10     C | o Updata ice thickness and snow depth |
11     C |==========================================================|
12     C \==========================================================/
13     IMPLICIT NONE
14    
15     C === Global variables ===
16     #include "SIZE.h"
17     #include "EEPARAMS.h"
18     #include "PARAMS.h"
19     #include "DYNVARS.h"
20     #include "GRID.h"
21     #include "FFIELDS.h"
22     #include "SEAICE_PARAMS.h"
23     #include "SEAICE.h"
24     #include "SEAICE_FFIELDS.h"
25    
26     #ifdef ALLOW_AUTODIFF_TAMC
27     # include "tamc.h"
28     #endif
29     C === Routine arguments ===
30     C myTime - Simulation time
31     C myIter - Simulation timestep number
32     C myThid - Thread no. that called this routine.
33     _RL myTime
34     INTEGER myIter, myThid
35     CEndOfInterface
36    
37     C === Local variables ===
38     C i,j,bi,bj - Loop counters
39    
40     INTEGER i, j, bi, bj
41 mlosch 1.3 C number of surface interface layer
42     INTEGER kSurface
43 mlosch 1.1 _RL TBC, salinity_ice, SDF, ICE_DENS, Q0, QS
44     #ifdef ALLOW_SEAICE_FLOODING
45     _RL hDraft, hFlood
46     #endif /* ALLOW_SEAICE_FLOODING */
47     _RL GAREA ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
48     _RL GHEFF ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
49     C RESID_HEAT is residual heat above freezing in equivalent m of ice
50     _RL RESID_HEAT ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
51    
52     C FICE - thermodynamic ice growth rate over sea ice in W/m^2
53     C >0 causes ice growth, <0 causes snow and sea ice melt
54     C FHEFF - effective thermodynamic ice growth rate over sea ice in W/m^2
55     C >0 causes ice growth, <0 causes snow and sea ice melt
56     C QNETO - thermodynamic ice growth rate over open water in W/m^2
57     C ( = surface heat flux )
58     C >0 causes ice growth, <0 causes snow and sea ice melt
59     C QNETI - net surface heat flux under ice in W/m^2
60     C QSWO - short wave heat flux over ocean in W/m^2
61     C QSWI - short wave heat flux under ice in W/m^2
62     _RL FHEFF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
63     _RL FICE (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
64     _RL QNETO (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65     _RL QNETI (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66     _RL QSWO (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67     _RL QSWI (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68     C
69     _RL HCORR (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     C SEAICE_SALT contains m of ice melted (<0) or created (>0)
71     _RL SEAICE_SALT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 dimitri 1.6 C actual ice thickness with upper and lower limit
73     _RL hIceLoc (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74    
75 mlosch 1.1 _RL HICE (1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
76     C actual snow thickness
77     _RL hSnwLoc(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
78     C wind speed
79     _RL UG (1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
80     _RL SPEED_SQ
81 mlosch 1.3 C local copy of AREA
82 mlosch 1.7 _RL areaLoc
83 mlosch 1.1
84 mlosch 1.7 #ifdef SEAICE_MULTICATEGORY
85 mlosch 1.1 INTEGER it
86     INTEGER ilockey
87     _RL RK
88     _RL HICEP(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
89     _RL FICEP(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
90 mlosch 1.7 _RL QSWIP(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
91 mlosch 1.1 #endif
92    
93     if ( buoyancyRelation .eq. 'OCEANICP' ) then
94     kSurface = Nr
95     else
96     kSurface = 1
97     endif
98    
99 mlosch 1.3 C ICE SALINITY (g/kg)
100     salinity_ice = 4.0 _d 0
101     C FREEZING TEMP. OF SEA WATER (deg C)
102     TBC = SEAICE_freeze
103     C RATIO OF WATER DESITY TO SNOW DENSITY
104     SDF = 1000.0 _d 0/330.0 _d 0
105     C RATIO OF SEA ICE DESITY TO WATER DENSITY
106     ICE_DENS = 0.920 _d 0
107     C INVERSE HEAT OF FUSION OF ICE (m^3/J)
108     Q0 = 1.0 _d -06 / 302.0 _d +00
109     C HEAT OF FUSION OF SNOW (J/m^3)
110     QS = 1.1 _d +08
111 mlosch 1.1
112     DO bj=myByLo(myThid),myByHi(myThid)
113     DO bi=myBxLo(myThid),myBxHi(myThid)
114     c
115     #ifdef ALLOW_AUTODIFF_TAMC
116     act1 = bi - myBxLo(myThid)
117     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
118     act2 = bj - myByLo(myThid)
119     max2 = myByHi(myThid) - myByLo(myThid) + 1
120     act3 = myThid - 1
121     max3 = nTx*nTy
122     act4 = ikey_dynamics - 1
123     iicekey = (act1 + 1) + act2*max1
124     & + act3*max1*max2
125     & + act4*max1*max2*max3
126     #endif /* ALLOW_AUTODIFF_TAMC */
127     C
128     C initialise a few fields
129     C
130 heimbach 1.2 #ifdef ALLOW_AUTODIFF_TAMC
131     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
132     CADJ & key = iicekey, byte = isbyte
133     CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj,
134     CADJ & key = iicekey, byte = isbyte
135     CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj,
136     CADJ & key = iicekey, byte = isbyte
137     #endif /* ALLOW_AUTODIFF_TAMC */
138 mlosch 1.1 DO J=1,sNy
139     DO I=1,sNx
140 mlosch 1.3 FHEFF(I,J) = 0.0 _d 0
141     FICE (I,J) = 0.0 _d 0
142 mlosch 1.7 #ifdef SEAICE_MULTICATEGORY
143 mlosch 1.3 FICEP(I,J) = 0.0 _d 0
144 mlosch 1.7 QSWIP(I,J) = 0.0 _d 0
145 mlosch 1.1 #endif
146 mlosch 1.3 FHEFF(I,J) = 0.0 _d 0
147     FICE (I,J) = 0.0 _d 0
148     QNETO(I,J) = 0.0 _d 0
149     QNETI(I,J) = 0.0 _d 0
150     QSWO (I,J) = 0.0 _d 0
151     QSWI (I,J) = 0.0 _d 0
152     HCORR(I,J) = 0.0 _d 0
153     SEAICE_SALT(I,J) = 0.0 _d 0
154     RESID_HEAT (I,J) = 0.0 _d 0
155 mlosch 1.1 ENDDO
156     ENDDO
157     #ifdef ALLOW_AUTODIFF_TAMC
158 heimbach 1.2 CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
159     CADJ & key = iicekey, byte = isbyte
160     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
161     CADJ & key = iicekey, byte = isbyte
162 mlosch 1.1 #endif /* ALLOW_AUTODIFF_TAMC */
163 heimbach 1.2 DO J=1,sNy
164     DO I=1,sNx
165 dimitri 1.6 C COMPUTE ACTUAL ICE THICKNESS AND PUT MINIMUM/MAXIMUM
166     C ON ICE THICKNESS FOR BUDGET COMPUTATION
167 mlosch 1.7 areaLoc = MAX(A22,AREA(I,J,2,bi,bj))
168     HICE(I,J) = HEFF(I,J,2,bi,bj)/areaLoc
169 dimitri 1.6 HICE(I,J) = MAX(HICE(I,J),0.05 _d +00)
170     HICE(I,J) = MIN(HICE(I,J),9.0 _d +00)
171 mlosch 1.7 hSnwLoc(I,J) = HSNOW(I,J,bi,bj)/areaLoc
172 heimbach 1.2 ENDDO
173     ENDDO
174 mlosch 1.1
175     C NOW DETERMINE MIXED LAYER TEMPERATURE
176     DO J=1,sNy
177     DO I=1,sNx
178     TMIX(I,J,bi,bj)=theta(I,J,kSurface,bi,bj)+273.16 _d +00
179     #ifdef SEAICE_DEBUG
180     TMIX(I,J,bi,bj)=MAX(TMIX(I,J,bi,bj),271.2 _d +00)
181     #endif
182     ENDDO
183     ENDDO
184    
185     C THERMAL WIND OF ATMOSPHERE
186     DO J=1,sNy
187     DO I=1,sNx
188     CML#ifdef SEAICE_EXTERNAL_FORCING
189     CMLC this seems to be more natural as we do compute the wind speed in
190     CMLC pkg/exf/exf_wind.F, but it changes the results
191     CML UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj))
192     CML#else
193     SPEED_SQ = UWIND(I,J,bi,bj)**2 + VWIND(I,J,bi,bj)**2
194     IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN
195     UG(I,J)=SEAICE_EPS
196     ELSE
197     UG(I,J)=SQRT(SPEED_SQ)
198     ENDIF
199     CML#endif /* SEAICE_EXTERNAL_FORCING */
200     ENDDO
201     ENDDO
202    
203    
204     #ifdef ALLOW_AUTODIFF_TAMC
205 heimbach 1.2 cphCADJ STORE heff = comlev1, key = ikey_dynamics
206     cphCADJ STORE hsnow = comlev1, key = ikey_dynamics
207     cphCADJ STORE uwind = comlev1, key = ikey_dynamics
208     cphCADJ STORE vwind = comlev1, key = ikey_dynamics
209     c
210 mlosch 1.1 CADJ STORE tice = comlev1, key = ikey_dynamics
211 mlosch 1.7 # ifdef SEAICE_MULTICATEGORY
212 mlosch 1.1 CADJ STORE tices = comlev1, key = ikey_dynamics
213     # endif
214     #endif /* ALLOW_AUTODIFF_TAMC */
215    
216     C NOW DETERMINE GROWTH RATES
217     C FIRST DO OPEN WATER
218     CALL SEAICE_BUDGET_OCEAN(
219     I UG,
220     U TMIX,
221     O QNETO, QSWO,
222     I bi, bj)
223    
224     C NOW DO ICE
225 mlosch 1.7 #ifdef SEAICE_MULTICATEGORY
226     C-- Start loop over muli-categories
227 mlosch 1.1 DO IT=1,MULTDIM
228     #ifdef ALLOW_AUTODIFF_TAMC
229     ilockey = (iicekey-1)*MULTDIM + IT
230     CADJ STORE tices(:,:,it,bi,bj) = comlev1_multdim,
231     CADJ & key = ilockey, byte = isbyte
232     #endif /* ALLOW_AUTODIFF_TAMC */
233 mlosch 1.7 RK=REAL(IT)
234 mlosch 1.1 DO J=1,sNy
235     DO I=1,sNx
236 mlosch 1.7 HICEP(I,J)=(HICE(I,J)/MULTDIM)*((2.0 _d 0*RK)-1.0 _d 0)
237 mlosch 1.1 TICE(I,J,bi,bj)=TICES(I,J,IT,bi,bj)
238     ENDDO
239     ENDDO
240     CALL SEAICE_BUDGET_ICE(
241 mlosch 1.5 I UG, HICEP, hSnwLoc,
242 mlosch 1.1 U TICE,
243 mlosch 1.7 O FICEP, QSWIP,
244 mlosch 1.1 I bi, bj)
245     DO J=1,sNy
246     DO I=1,sNx
247 mlosch 1.7 C average surface heat fluxes/growth rates
248     FICE (I,J) = FICE(I,J) + FICEP(I,J)/MULTDIM
249     QSWI (I,J) = QSWI(I,J) + QSWIP(I,J)/MULTDIM
250     TICES(I,J,IT,bi,bj) = TICE(I,J,bi,bj)
251 mlosch 1.1 ENDDO
252     ENDDO
253     ENDDO
254 mlosch 1.7 C-- End loop over multi-categories
255     #else /* SEAICE_MULTICATEGORY */
256 mlosch 1.1 CALL SEAICE_BUDGET_ICE(
257     I UG, HICE, hSnwLoc,
258     U TICE,
259     O FICE, QSWI,
260     I bi, bj)
261 mlosch 1.7 #endif /* SEAICE_MULTICATEGORY */
262 mlosch 1.1
263 mlosch 1.3 #ifdef ALLOW_AUTODIFF_TAMC
264     CADJ STORE theta(:,:,:,bi,bj)= comlev1_bibj,
265     CADJ & key = iicekey, byte = isbyte
266     CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
267     CADJ & key = iicekey, byte = isbyte
268     #endif /* ALLOW_AUTODIFF_TAMC */
269     DO J=1,sNy
270     DO I=1,sNx
271     C-- Create or melt sea-ice so that first-level oceanic temperature
272     C is approximately at the freezing point when there is sea-ice.
273     C Initially the units of YNEG are m of sea-ice.
274     C The factor dRf(1)/72.0764, used to convert temperature
275     C change in deg K to m of sea-ice, is approximately:
276     C dRf(1) * (sea water heat capacity = 3996 J/kg/K)
277     C * (density of sea-water = 1026 kg/m^3)
278     C / (latent heat of fusion of sea-ice = 334000 J/kg)
279     C / (density of sea-ice = 910 kg/m^3)
280     C Negative YNEG leads to ice growth.
281     C Positive YNEG leads to ice melting.
282     IF ( .NOT. inAdMode ) THEN
283     #ifdef SEAICE_VARIABLE_FREEZING_POINT
284     TBC = -0.0575 _d 0*salt(I,J,kSurface,bi,bj) + 0.0901 _d 0
285     #endif /* SEAICE_VARIABLE_FREEZING_POINT */
286     YNEG(I,J,bi,bj) = (theta(I,J,kSurface,bi,bj)-TBC)
287     & *dRf(1)/72.0764 _d 0
288     ELSE
289     YNEG(I,J,bi,bj)= 0.
290     ENDIF
291     GHEFF(I,J)=HEFF(I,J,1,bi,bj)
292     C Melt (YNEG>0) or create (YNEG<0) sea ice
293     HEFF(I,J,1,bi,bj)=MAX(ZERO,HEFF(I,J,1,bi,bj)-YNEG(I,J,bi,bj))
294     RESID_HEAT(I,J) = YNEG(I,J,bi,bj)
295     YNEG(I,J,bi,bj) = GHEFF(I,J)-HEFF(I,J,1,bi,bj)
296     SEAICE_SALT(I,J) = SEAICE_SALT(I,J)-YNEG(I,J,bi,bj)
297     RESID_HEAT(I,J) = RESID_HEAT(I,J)-YNEG(I,J,bi,bj)
298     C YNEG now contains m of ice melted (>0) or created (<0)
299     C SEAICE_SALT contains m of ice melted (<0) or created (>0)
300     C RESID_HEAT is residual heat above freezing in equivalent m of ice
301     ENDDO
302     ENDDO
303    
304 mlosch 1.1 cph(
305     #ifdef ALLOW_AUTODIFF_TAMC
306     cphCADJ STORE heff = comlev1, key = ikey_dynamics
307     cphCADJ STORE hsnow = comlev1, key = ikey_dynamics
308     #endif
309     cph)
310     c
311     #ifdef ALLOW_AUTODIFF_TAMC
312     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
313     CADJ & key = iicekey, byte = isbyte
314     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
315     CADJ & key = iicekey, byte = isbyte
316 heimbach 1.2 CADJ STORE fice(:,:) = comlev1_bibj,
317 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
318     #endif /* ALLOW_AUTODIFF_TAMC */
319     cph)
320    
321     DO J=1,sNy
322     DO I=1,sNx
323 mlosch 1.3 C NOW CALCULATE CORRECTED effective growth in J/m^2 (>0=melt)
324     GHEFF(I,J)=-SEAICE_deltaTtherm*FICE(I,J)*AREA(I,J,2,bi,bj)
325 mlosch 1.1 ENDDO
326     ENDDO
327 heimbach 1.2
328 mlosch 1.1 #ifdef ALLOW_AUTODIFF_TAMC
329 mlosch 1.3 CADJ STORE fice(:,:) = comlev1_bibj,
330     CADJ & key = iicekey, byte = isbyte
331 mlosch 1.1 #endif /* ALLOW_AUTODIFF_TAMC */
332    
333     DO J=1,sNy
334     DO I=1,sNx
335     IF(FICE(I,J).LT.ZERO.AND.AREA(I,J,2,bi,bj).GT.ZERO) THEN
336     C use FICE to melt snow and CALCULATE CORRECTED GROWTH
337     GAREA(I,J)=HSNOW(I,J,bi,bj)*QS ! effective snow thickness in J/m^2
338     IF(GHEFF(I,J).LE.GAREA(I,J)) THEN
339     C not enough heat to melt all snow; use up all heat flux FICE
340     HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)-GHEFF(I,J)/QS
341     C SNOW CONVERTED INTO WATER AND THEN INTO equivalent m of ICE melt
342     C The factor 1/SDF/ICE_DENS converts m of snow to m of sea-ice
343     SEAICE_SALT(I,J)=SEAICE_SALT(I,J)
344     & -GHEFF(I,J)/QS/SDF/ICE_DENS
345     FICE(I,J)=ZERO
346     ELSE
347     C enought heat to melt snow completely;
348     C compute remaining heat flux that will melt ice
349     FICE(I,J)=-(GHEFF(I,J)-GAREA(I,J))/
350     & SEAICE_deltaTtherm/AREA(I,J,2,bi,bj)
351     C convert all snow to melt water (fresh water flux)
352     SEAICE_SALT(I,J)=SEAICE_SALT(I,J)
353     & -HSNOW(I,J,bi,bj)/SDF/ICE_DENS
354     HSNOW(I,J,bi,bj)=0.0
355     END IF
356     END IF
357 heimbach 1.2 ENDDO
358     ENDDO
359 mlosch 1.1
360 heimbach 1.2 #ifdef ALLOW_AUTODIFF_TAMC
361 mlosch 1.3 CADJ STORE fice(:,:) = comlev1_bibj,
362     CADJ & key = iicekey, byte = isbyte
363 heimbach 1.2 #endif /* ALLOW_AUTODIFF_TAMC */
364    
365     DO J=1,sNy
366     DO I=1,sNx
367 mlosch 1.1 C NOW GET TOTAL GROWTH RATE in W/m^2, >0 causes ice growth
368     FHEFF(I,J)= FICE(I,J) * AREA(I,J,2,bi,bj)
369     & + QNETO(I,J) * (ONE-AREA(I,J,2,bi,bj))
370     ENDDO
371     ENDDO
372     cph(
373     #ifdef ALLOW_AUTODIFF_TAMC
374     CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
375     CADJ & key = iicekey, byte = isbyte
376     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
377     CADJ & key = iicekey, byte = isbyte
378 mlosch 1.3 CADJ STORE fice(:,:) = comlev1_bibj,
379 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
380 mlosch 1.3 CADJ STORE fheff(:,:) = comlev1_bibj,
381 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
382 mlosch 1.3 CADJ STORE qneto(:,:) = comlev1_bibj,
383 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
384 mlosch 1.3 CADJ STORE qswi(:,:) = comlev1_bibj,
385 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
386 mlosch 1.3 CADJ STORE qswo(:,:) = comlev1_bibj,
387 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
388     #endif /* ALLOW_AUTODIFF_TAMC */
389     cph)
390     DO J=1,sNy
391     DO I=1,sNx
392     C NOW UPDATE AREA
393 mlosch 1.3 GHEFF(I,J) = -SEAICE_deltaTtherm*FHEFF(I,J)*Q0
394     GAREA(I,J) = SEAICE_deltaTtherm*QNETO(I,J)*Q0
395     GHEFF(I,J) = -ONE*MIN(HEFF(I,J,1,bi,bj),GHEFF(I,J))
396     GAREA(I,J) = MAX(ZERO,GAREA(I,J))
397     HCORR(I,J) = MIN(ZERO,GHEFF(I,J))
398 mlosch 1.1 ENDDO
399     ENDDO
400     #ifdef ALLOW_AUTODIFF_TAMC
401     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
402     CADJ & key = iicekey, byte = isbyte
403     #endif
404     DO J=1,sNy
405     DO I=1,sNx
406     GAREA(I,J)=(ONE-AREA(I,J,2,bi,bj))*GAREA(I,J)/HO
407     & +HALF*HCORR(I,J)*AREA(I,J,2,bi,bj)
408     & /(HEFF(I,J,1,bi,bj)+.00001 _d 0)
409     AREA(I,J,1,bi,bj)=AREA(I,J,1,bi,bj)+GAREA(I,J)
410     ENDDO
411     ENDDO
412     #ifdef ALLOW_AUTODIFF_TAMC
413     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
414     CADJ & key = iicekey, byte = isbyte
415     #endif
416     DO J=1,sNy
417     DO I=1,sNx
418    
419     C NOW UPDATE HEFF
420 mlosch 1.3 GHEFF(I,J) = -SEAICE_deltaTtherm*
421     & FICE(I,J)*Q0*AREA(I,J,2,bi,bj)
422     GHEFF(I,J) = -ONE*MIN(HEFF(I,J,1,bi,bj),GHEFF(I,J))
423     HEFF(I,J,1,bi,bj)= HEFF(I,J,1,bi,bj)+GHEFF(I,J)
424     SEAICE_SALT(I,J) = SEAICE_SALT(I,J)+GHEFF(I,J)
425 mlosch 1.1
426     C NOW CALCULATE QNETI UNDER ICE IF ANY
427 mlosch 1.3 QNETI(I,J) = (GHEFF(I,J)-SEAICE_deltaTtherm*
428 mlosch 1.1 & FICE(I,J)*Q0*AREA(I,J,2,bi,bj))/Q0/SEAICE_deltaTtherm
429    
430     C NOW UPDATE OTHER THINGS
431    
432     IF(FICE(I,J).GT.ZERO) THEN
433     C FREEZING, PRECIP ADDED AS SNOW
434 mlosch 1.3 HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+SEAICE_deltaTtherm*
435 mlosch 1.1 & PRECIP(I,J,bi,bj)*AREA(I,J,2,bi,bj)*SDF
436     ELSE
437     C ADD PRECIP AS RAIN, WATER CONVERTED INTO equivalent m of ICE BY 1/ICE_DENS
438 mlosch 1.3 SEAICE_SALT(I,J) = SEAICE_SALT(I,J)
439 mlosch 1.1 & -PRECIP(I,J,bi,bj)*AREA(I,J,2,bi,bj)*
440     & SEAICE_deltaTtherm/ICE_DENS
441     ENDIF
442    
443     C Now add in precip over open water directly into ocean as negative salt
444 mlosch 1.3 SEAICE_SALT(I,J) = SEAICE_SALT(I,J)
445 mlosch 1.1 & -PRECIP(I,J,bi,bj)*(ONE-AREA(I,J,2,bi,bj))
446     & *SEAICE_deltaTtherm/ICE_DENS
447    
448     C Now melt snow if there is residual heat left in surface level
449     C Note that units of YNEG and SEAICE_SALT are m of ice
450 heimbach 1.4 cph( very sensitive bit here by JZ
451     IF( RESID_HEAT(I,J) .GT. ZERO
452     & .AND. HSNOW(I,J,bi,bj) .GT. ZERO ) THEN
453 mlosch 1.3 GHEFF(I,J) = MIN( HSNOW(I,J,bi,bj)/SDF/ICE_DENS,
454     & RESID_HEAT(I,J) )
455     YNEG(I,J,bi,bj) = YNEG(I,J,bi,bj)+GHEFF(I,J)
456     HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)-GHEFF(I,J)*SDF*ICE_DENS
457     SEAICE_SALT(I,J) = SEAICE_SALT(I,J)-GHEFF(I,J)
458 mlosch 1.1 ENDIF
459 heimbach 1.4 cph)
460 mlosch 1.1
461     C NOW GET FRESH WATER FLUX
462 mlosch 1.3 EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*(
463 mlosch 1.1 & EVAP(I,J,bi,bj)*(ONE-AREA(I,J,2,bi,bj))
464     & -RUNOFF(I,J,bi,bj)
465     & +SEAICE_SALT(I,J)*ICE_DENS/SEAICE_deltaTtherm
466     & )
467    
468     C NOW GET TOTAL QNET AND QSW
469 mlosch 1.3 QNET(I,J,bi,bj) = QNETI(I,J) * AREA(I,J,2,bi,bj)
470     & +QNETO(I,J) * (ONE-AREA(I,J,2,bi,bj))
471     QSW(I,J,bi,bj) = QSWI(I,J) * AREA(I,J,2,bi,bj)
472     & +QSWO(I,J) * (ONE-AREA(I,J,2,bi,bj))
473 mlosch 1.1
474     C Now convert YNEG back to deg K.
475 mlosch 1.3 YNEG(I,J,bi,bj) = YNEG(I,J,bi,bj)*recip_dRf(1)*72.0764 _d 0
476 mlosch 1.1
477     C Add YNEG contribution to QNET
478 mlosch 1.3 QNET(I,J,bi,bj) = QNET(I,J,bi,bj)
479 mlosch 1.1 & +YNEG(I,J,bi,bj)/SEAICE_deltaTtherm
480     & *maskC(I,J,kSurface,bi,bj)
481     & *HeatCapacity_Cp*recip_horiVertRatio*rhoConst
482     & *drF(kSurface)*hFacC(i,j,kSurface,bi,bj)
483    
484     ENDDO
485     ENDDO
486    
487     #ifdef SEAICE_DEBUG
488     c CALL PLOT_FIELD_XYRS( UWIND,'Current UWIND ', myIter, myThid )
489     c CALL PLOT_FIELD_XYRS( VWIND,'Current VWIND ', myIter, myThid )
490     CALL PLOT_FIELD_XYRS( GWATX,'Current GWATX ', myIter, myThid )
491     CALL PLOT_FIELD_XYRS( GWATY,'Current GWATY ', myIter, myThid )
492     CML CALL PLOT_FIELD_XYRL( FO,'Current FO ', myIter, myThid )
493     CML CALL PLOT_FIELD_XYRL( FHEFF,'Current FHEFF ', myIter, myThid )
494     CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid )
495     CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid )
496     CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid )
497     DO j=1-OLy,sNy+OLy
498     DO i=1-OLx,sNx+OLx
499     GHEFF(I,J)=SQRT(UICE(I,J,1,bi,bj)**2+VICE(I,J,1,bi,bj)**2)
500     GAREA(I,J)=HEFF(I,J,1,bi,bj)
501     print*,'I J QNET:',I, J, QNET(i,j,bi,bj), QSW(I,J,bi,bj)
502     ENDDO
503     ENDDO
504     CALL PLOT_FIELD_XYRL( GHEFF,'Current UICE ', myIter, myThid )
505     CALL PLOT_FIELD_XYRL( GAREA,'Current HEFF ', myIter, myThid )
506     DO j=1-OLy,sNy+OLy
507     DO i=1-OLx,sNx+OLx
508     if(HEFF(i,j,1,bi,bj).gt.1.) then
509     print '(A,2i4,3f10.2)','#### i j heff theta yneg',i,j,
510     & HEFF(i,j,1,bi,bj),theta(I,J,1,bi,bj),yneg(I,J,bi,bj)
511     print '(A,3f10.2)','QSW, QNET before/after correction',
512     & QSW(I,J,bi,bj),QNETI(I,J)*AREA(I,J,2,bi,bj)+
513     & (ONE-AREA(I,J,2,bi,bj))*QNETO(I,J), QNET(I,J,bi,bj)
514     endif
515     ENDDO
516     ENDDO
517     #endif /* SEAICE_DEBUG */
518    
519     crg Added by Ralf Giering: do we need DO_WE_NEED_THIS ?
520     #define DO_WE_NEED_THIS
521     C NOW ZERO OUTSIDE POINTS
522     #ifdef ALLOW_AUTODIFF_TAMC
523     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
524     CADJ & key = iicekey, byte = isbyte
525     CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
526     CADJ & key = iicekey, byte = isbyte
527     #endif /* ALLOW_AUTODIFF_TAMC */
528     DO J=1,sNy
529     DO I=1,sNx
530     C NOW SET AREA(I,J,1,bi,bj)=0 WHERE NO ICE IS
531     AREA(I,J,1,bi,bj)=MIN(AREA(I,J,1,bi,bj)
532     & ,HEFF(I,J,1,bi,bj)/.0001 _d 0)
533     ENDDO
534     ENDDO
535     #ifdef ALLOW_AUTODIFF_TAMC
536     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
537     CADJ & key = iicekey, byte = isbyte
538     #endif /* ALLOW_AUTODIFF_TAMC */
539     DO J=1,sNy
540     DO I=1,sNx
541     C NOW TRUNCATE AREA
542     #ifdef DO_WE_NEED_THIS
543     AREA(I,J,1,bi,bj)=MIN(ONE,AREA(I,J,1,bi,bj))
544     ENDDO
545     ENDDO
546     #ifdef ALLOW_AUTODIFF_TAMC
547     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
548     CADJ & key = iicekey, byte = isbyte
549     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
550     CADJ & key = iicekey, byte = isbyte
551     #endif /* ALLOW_AUTODIFF_TAMC */
552     DO J=1,sNy
553     DO I=1,sNx
554 mlosch 1.3 AREA(I,J,1,bi,bj) = MAX(ZERO,AREA(I,J,1,bi,bj))
555     HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj))
556 mlosch 1.1 #endif
557 mlosch 1.3 AREA(I,J,1,bi,bj) = AREA(I,J,1,bi,bj)*HEFFM(I,J,bi,bj)
558     HEFF(I,J,1,bi,bj) = HEFF(I,J,1,bi,bj)*HEFFM(I,J,bi,bj)
559 mlosch 1.1 #ifdef DO_WE_NEED_THIS
560     c HEFF(I,J,1,bi,bj)=MIN(MAX_HEFF,HEFF(I,J,1,bi,bj))
561     #endif
562 mlosch 1.3 HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj)
563 mlosch 1.1 ENDDO
564     ENDDO
565    
566     #ifdef ALLOW_SEAICE_FLOODING
567     IF ( SEAICEuseFlooding ) THEN
568     C convert snow to ice if submerged
569     DO J=1,sNy
570     DO I=1,sNx
571     hDraft = (HSNOW(I,J,bi,bj)*330. _d 0
572     & +HEFF(I,J,1,bi,bj)*SEAICE_rhoIce)/1000. _d 0
573     hFlood = hDraft - MIN(hDraft,HEFF(I,J,1,bi,bj))
574     HEFF(I,J,1,bi,bj) = HEFF(I,J,1,bi,bj) + hFlood
575 mlosch 1.3 HSNOW(I,J,bi,bj) = MAX(0. _d 0,HSNOW(I,J,bi,bj)-hFlood/SDF)
576 mlosch 1.1 ENDDO
577     ENDDO
578     ENDIF
579     #endif /* ALLOW_SEAICE_FLOODING */
580    
581     #ifdef ATMOSPHERIC_LOADING
582     IF ( useRealFreshWaterFlux ) THEN
583     DO J=1,sNy
584     DO I=1,sNx
585     sIceLoad(i,j,bi,bj) = HEFF(I,J,1,bi,bj)*SEAICE_rhoIce
586     & + HSNOW(I,J,bi,bj)* 330. _d 0
587     ENDDO
588     ENDDO
589     ENDIF
590     #endif
591    
592     ENDDO
593     ENDDO
594    
595     RETURN
596     END

  ViewVC Help
Powered by ViewVC 1.1.22