/[MITgcm]/MITgcm/pkg/seaice/seaice_growth.F
ViewVC logotype

Annotation of /MITgcm/pkg/seaice/seaice_growth.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download)
Fri Dec 15 15:04:53 2006 UTC (17 years, 4 months ago) by mlosch
Branch: MAIN
Changes since 1.2: +118 -119 lines
- replace area(i,j,3,bi,bj) by a local array.
- rearrange routine a little more (Patrick is going to love this, but
  I moved the store directives as well): move the budget computations
  (seaice_budget_ocean/ice) to the beginning of the routine. Results
  are not changed and I don't expect any problems for the adjoint
  because the switched blocks are completely independent.

1 mlosch 1.3 C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_growth.F,v 1.2 2006/12/14 22:31:18 heimbach Exp $
2 heimbach 1.2 C $Name: $
3 mlosch 1.1
4     #include "SEAICE_OPTIONS.h"
5    
6     CStartOfInterface
7     SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid )
8     C /==========================================================\
9     C | SUBROUTINE seaice_growth |
10     C | o Updata ice thickness and snow depth |
11     C |==========================================================|
12     C \==========================================================/
13     IMPLICIT NONE
14    
15     C === Global variables ===
16     #include "SIZE.h"
17     #include "EEPARAMS.h"
18     #include "PARAMS.h"
19     #include "DYNVARS.h"
20     #include "GRID.h"
21     #include "FFIELDS.h"
22     #include "SEAICE_PARAMS.h"
23     #include "SEAICE.h"
24     #include "SEAICE_FFIELDS.h"
25    
26     #ifdef ALLOW_AUTODIFF_TAMC
27     # include "tamc.h"
28     #endif
29     C === Routine arguments ===
30     C myTime - Simulation time
31     C myIter - Simulation timestep number
32     C myThid - Thread no. that called this routine.
33     _RL myTime
34     INTEGER myIter, myThid
35     CEndOfInterface
36    
37     C === Local variables ===
38     C i,j,bi,bj - Loop counters
39    
40     INTEGER i, j, bi, bj
41 mlosch 1.3 C number of surface interface layer
42     INTEGER kSurface
43 mlosch 1.1 _RL TBC, salinity_ice, SDF, ICE_DENS, Q0, QS
44     #ifdef ALLOW_SEAICE_FLOODING
45     _RL hDraft, hFlood
46     #endif /* ALLOW_SEAICE_FLOODING */
47     _RL GAREA ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
48     _RL GHEFF ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
49     C RESID_HEAT is residual heat above freezing in equivalent m of ice
50     _RL RESID_HEAT ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
51    
52     C FICE - thermodynamic ice growth rate over sea ice in W/m^2
53     C >0 causes ice growth, <0 causes snow and sea ice melt
54     C FHEFF - effective thermodynamic ice growth rate over sea ice in W/m^2
55     C >0 causes ice growth, <0 causes snow and sea ice melt
56     C QNETO - thermodynamic ice growth rate over open water in W/m^2
57     C ( = surface heat flux )
58     C >0 causes ice growth, <0 causes snow and sea ice melt
59     C QNETI - net surface heat flux under ice in W/m^2
60     C QSWO - short wave heat flux over ocean in W/m^2
61     C QSWI - short wave heat flux under ice in W/m^2
62     _RL FHEFF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
63     _RL FICE (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
64     _RL QNETO (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65     _RL QNETI (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66     _RL QSWO (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67     _RL QSWI (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68     C
69     _RL HCORR (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     C SEAICE_SALT contains m of ice melted (<0) or created (>0)
71     _RL SEAICE_SALT(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     C actual ice thickness
73     _RL HICE (1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
74     C actual snow thickness
75     _RL hSnwLoc(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
76     C wind speed
77     _RL UG (1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
78     _RL SPEED_SQ
79 mlosch 1.3 C local copy of AREA
80     _RL areaLoc(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
81 mlosch 1.1
82     #ifdef SEAICE_MULTILEVEL
83     INTEGER it
84     INTEGER ilockey
85     _RL RK
86     _RL HICEP(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
87     _RL FICEP(1-OLx:sNx+OLx, 1-OLy:sNy+OLy)
88     #endif
89    
90     if ( buoyancyRelation .eq. 'OCEANICP' ) then
91     kSurface = Nr
92     else
93     kSurface = 1
94     endif
95    
96 mlosch 1.3 C ICE SALINITY (g/kg)
97     salinity_ice = 4.0 _d 0
98     C FREEZING TEMP. OF SEA WATER (deg C)
99     TBC = SEAICE_freeze
100     C RATIO OF WATER DESITY TO SNOW DENSITY
101     SDF = 1000.0 _d 0/330.0 _d 0
102     C RATIO OF SEA ICE DESITY TO WATER DENSITY
103     ICE_DENS = 0.920 _d 0
104     C INVERSE HEAT OF FUSION OF ICE (m^3/J)
105     Q0 = 1.0 _d -06 / 302.0 _d +00
106     C HEAT OF FUSION OF SNOW (J/m^3)
107     QS = 1.1 _d +08
108 mlosch 1.1
109     DO bj=myByLo(myThid),myByHi(myThid)
110     DO bi=myBxLo(myThid),myBxHi(myThid)
111     c
112     cph(
113     #ifdef ALLOW_AUTODIFF_TAMC
114     act1 = bi - myBxLo(myThid)
115     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
116     act2 = bj - myByLo(myThid)
117     max2 = myByHi(myThid) - myByLo(myThid) + 1
118     act3 = myThid - 1
119     max3 = nTx*nTy
120     act4 = ikey_dynamics - 1
121     iicekey = (act1 + 1) + act2*max1
122     & + act3*max1*max2
123     & + act4*max1*max2*max3
124     #endif /* ALLOW_AUTODIFF_TAMC */
125     C
126     C initialise a few fields
127     C
128 heimbach 1.2 #ifdef ALLOW_AUTODIFF_TAMC
129     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
130     CADJ & key = iicekey, byte = isbyte
131     CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj,
132     CADJ & key = iicekey, byte = isbyte
133     CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj,
134     CADJ & key = iicekey, byte = isbyte
135     #endif /* ALLOW_AUTODIFF_TAMC */
136 mlosch 1.1 DO J=1,sNy
137     DO I=1,sNx
138 mlosch 1.3 areaLoc(I,J) = MAX(A22,AREA(I,J,2,bi,bj))
139     FHEFF(I,J) = 0.0 _d 0
140     FICE (I,J) = 0.0 _d 0
141 mlosch 1.1 #ifdef SEAICE_MULTILEVEL
142 mlosch 1.3 FICEP(I,J) = 0.0 _d 0
143 mlosch 1.1 #endif
144 mlosch 1.3 FHEFF(I,J) = 0.0 _d 0
145     FICE (I,J) = 0.0 _d 0
146     QNETO(I,J) = 0.0 _d 0
147     QNETI(I,J) = 0.0 _d 0
148     QSWO (I,J) = 0.0 _d 0
149     QSWI (I,J) = 0.0 _d 0
150     HCORR(I,J) = 0.0 _d 0
151     SEAICE_SALT(I,J) = 0.0 _d 0
152     RESID_HEAT (I,J) = 0.0 _d 0
153 mlosch 1.1 ENDDO
154     ENDDO
155     #ifdef ALLOW_AUTODIFF_TAMC
156     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
157     CADJ & key = iicekey, byte = isbyte
158 heimbach 1.2 CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
159     CADJ & key = iicekey, byte = isbyte
160     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
161     CADJ & key = iicekey, byte = isbyte
162 mlosch 1.1 #endif /* ALLOW_AUTODIFF_TAMC */
163 heimbach 1.2 DO J=1,sNy
164     DO I=1,sNx
165     cph need to adjoint-store AREA again before using it in further init.
166     cph (all these initialisations involving AREA are nasty "non-linear")
167 mlosch 1.3 HICE(I,J) = HEFF(I,J,2,bi,bj)/areaLoc(I,J)
168     hSnwLoc(I,J) = HSNOW(I,J,bi,bj)/areaLoc(I,J)
169 heimbach 1.2 ENDDO
170     ENDDO
171 mlosch 1.1
172     C NOW DETERMINE MIXED LAYER TEMPERATURE
173     DO J=1,sNy
174     DO I=1,sNx
175     TMIX(I,J,bi,bj)=theta(I,J,kSurface,bi,bj)+273.16 _d +00
176     #ifdef SEAICE_DEBUG
177     TMIX(I,J,bi,bj)=MAX(TMIX(I,J,bi,bj),271.2 _d +00)
178     #endif
179     ENDDO
180     ENDDO
181    
182     C THERMAL WIND OF ATMOSPHERE
183     DO J=1,sNy
184     DO I=1,sNx
185     CML#ifdef SEAICE_EXTERNAL_FORCING
186     CMLC this seems to be more natural as we do compute the wind speed in
187     CMLC pkg/exf/exf_wind.F, but it changes the results
188     CML UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj))
189     CML#else
190     SPEED_SQ = UWIND(I,J,bi,bj)**2 + VWIND(I,J,bi,bj)**2
191     IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN
192     UG(I,J)=SEAICE_EPS
193     ELSE
194     UG(I,J)=SQRT(SPEED_SQ)
195     ENDIF
196     CML#endif /* SEAICE_EXTERNAL_FORCING */
197     ENDDO
198     ENDDO
199    
200    
201     #ifdef ALLOW_AUTODIFF_TAMC
202 heimbach 1.2 cphCADJ STORE heff = comlev1, key = ikey_dynamics
203     cphCADJ STORE hsnow = comlev1, key = ikey_dynamics
204     cphCADJ STORE uwind = comlev1, key = ikey_dynamics
205     cphCADJ STORE vwind = comlev1, key = ikey_dynamics
206     c
207 mlosch 1.1 CADJ STORE tice = comlev1, key = ikey_dynamics
208     # ifdef SEAICE_MULTILEVEL
209     CADJ STORE tices = comlev1, key = ikey_dynamics
210     # endif
211     #endif /* ALLOW_AUTODIFF_TAMC */
212    
213     C NOW DETERMINE GROWTH RATES
214     C FIRST DO OPEN WATER
215     CALL SEAICE_BUDGET_OCEAN(
216     I UG,
217     U TMIX,
218     O QNETO, QSWO,
219     I bi, bj)
220    
221     C NOW DO ICE
222     #ifdef SEAICE_MULTILEVEL
223     C-- Start loop over muli-levels
224     DO IT=1,MULTDIM
225     #ifdef ALLOW_AUTODIFF_TAMC
226     ilockey = (iicekey-1)*MULTDIM + IT
227     CADJ STORE tices(:,:,it,bi,bj) = comlev1_multdim,
228     CADJ & key = ilockey, byte = isbyte
229     #endif /* ALLOW_AUTODIFF_TAMC */
230     DO J=1,sNy
231     DO I=1,sNx
232     RK=IT*1.0
233     HICEP(I,J)=(HICE(I,J)/7.0 _d 0)*((2.0 _d 0*RK)-1.0 _d 0)
234     TICE(I,J,bi,bj)=TICES(I,J,IT,bi,bj)
235     ENDDO
236     ENDDO
237     CALL SEAICE_BUDGET_ICE(
238     I UG, HICE, hSnwLoc,
239     U TICE,
240     O FICE, QSWI,
241     I bi, bj)
242     DO J=1,sNy
243     DO I=1,sNx
244     FICEP(I,J)=(FICE(I,J)/7.0 _d 0)+FICEP(I,J)
245     TICES(I,J,IT,bi,bj)=TICE(I,J,bi,bj)
246     ENDDO
247     ENDDO
248     ENDDO
249     C-- End loop over muli-levels
250     DO J=1,sNy
251     DO I=1,sNx
252     FICE(I,J)=FICEP(I,J)
253     ENDDO
254     ENDDO
255     #else /* SEAICE_MULTILEVEL */
256     CALL SEAICE_BUDGET_ICE(
257     I UG, HICE, hSnwLoc,
258     U TICE,
259     O FICE, QSWI,
260     I bi, bj)
261     #endif /* SEAICE_MULTILEVEL */
262    
263 mlosch 1.3 #ifdef ALLOW_AUTODIFF_TAMC
264     CADJ STORE theta(:,:,:,bi,bj)= comlev1_bibj,
265     CADJ & key = iicekey, byte = isbyte
266     CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
267     CADJ & key = iicekey, byte = isbyte
268     #endif /* ALLOW_AUTODIFF_TAMC */
269     DO J=1,sNy
270     DO I=1,sNx
271     C-- Create or melt sea-ice so that first-level oceanic temperature
272     C is approximately at the freezing point when there is sea-ice.
273     C Initially the units of YNEG are m of sea-ice.
274     C The factor dRf(1)/72.0764, used to convert temperature
275     C change in deg K to m of sea-ice, is approximately:
276     C dRf(1) * (sea water heat capacity = 3996 J/kg/K)
277     C * (density of sea-water = 1026 kg/m^3)
278     C / (latent heat of fusion of sea-ice = 334000 J/kg)
279     C / (density of sea-ice = 910 kg/m^3)
280     C Negative YNEG leads to ice growth.
281     C Positive YNEG leads to ice melting.
282     IF ( .NOT. inAdMode ) THEN
283     #ifdef SEAICE_VARIABLE_FREEZING_POINT
284     TBC = -0.0575 _d 0*salt(I,J,kSurface,bi,bj) + 0.0901 _d 0
285     #endif /* SEAICE_VARIABLE_FREEZING_POINT */
286     YNEG(I,J,bi,bj) = (theta(I,J,kSurface,bi,bj)-TBC)
287     & *dRf(1)/72.0764 _d 0
288     ELSE
289     YNEG(I,J,bi,bj)= 0.
290     ENDIF
291     GHEFF(I,J)=HEFF(I,J,1,bi,bj)
292     C Melt (YNEG>0) or create (YNEG<0) sea ice
293     HEFF(I,J,1,bi,bj)=MAX(ZERO,HEFF(I,J,1,bi,bj)-YNEG(I,J,bi,bj))
294     RESID_HEAT(I,J) = YNEG(I,J,bi,bj)
295     YNEG(I,J,bi,bj) = GHEFF(I,J)-HEFF(I,J,1,bi,bj)
296     SEAICE_SALT(I,J) = SEAICE_SALT(I,J)-YNEG(I,J,bi,bj)
297     RESID_HEAT(I,J) = RESID_HEAT(I,J)-YNEG(I,J,bi,bj)
298     C YNEG now contains m of ice melted (>0) or created (<0)
299     C SEAICE_SALT contains m of ice melted (<0) or created (>0)
300     C RESID_HEAT is residual heat above freezing in equivalent m of ice
301     ENDDO
302     ENDDO
303    
304 mlosch 1.1 cph(
305     #ifdef ALLOW_AUTODIFF_TAMC
306     cphCADJ STORE heff = comlev1, key = ikey_dynamics
307     cphCADJ STORE hsnow = comlev1, key = ikey_dynamics
308     #endif
309     cph)
310     c
311     #ifdef ALLOW_AUTODIFF_TAMC
312     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
313     CADJ & key = iicekey, byte = isbyte
314     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
315     CADJ & key = iicekey, byte = isbyte
316 heimbach 1.2 CADJ STORE fice(:,:) = comlev1_bibj,
317 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
318     #endif /* ALLOW_AUTODIFF_TAMC */
319     cph)
320    
321     DO J=1,sNy
322     DO I=1,sNx
323 mlosch 1.3 C NOW CALCULATE CORRECTED effective growth in J/m^2 (>0=melt)
324     GHEFF(I,J)=-SEAICE_deltaTtherm*FICE(I,J)*AREA(I,J,2,bi,bj)
325 mlosch 1.1 ENDDO
326     ENDDO
327 heimbach 1.2
328 mlosch 1.1 #ifdef ALLOW_AUTODIFF_TAMC
329 mlosch 1.3 CADJ STORE fice(:,:) = comlev1_bibj,
330     CADJ & key = iicekey, byte = isbyte
331 mlosch 1.1 #endif /* ALLOW_AUTODIFF_TAMC */
332    
333     DO J=1,sNy
334     DO I=1,sNx
335     IF(FICE(I,J).LT.ZERO.AND.AREA(I,J,2,bi,bj).GT.ZERO) THEN
336     C use FICE to melt snow and CALCULATE CORRECTED GROWTH
337     GAREA(I,J)=HSNOW(I,J,bi,bj)*QS ! effective snow thickness in J/m^2
338     IF(GHEFF(I,J).LE.GAREA(I,J)) THEN
339     C not enough heat to melt all snow; use up all heat flux FICE
340     HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)-GHEFF(I,J)/QS
341     C SNOW CONVERTED INTO WATER AND THEN INTO equivalent m of ICE melt
342     C The factor 1/SDF/ICE_DENS converts m of snow to m of sea-ice
343     SEAICE_SALT(I,J)=SEAICE_SALT(I,J)
344     & -GHEFF(I,J)/QS/SDF/ICE_DENS
345     FICE(I,J)=ZERO
346     ELSE
347     C enought heat to melt snow completely;
348     C compute remaining heat flux that will melt ice
349     FICE(I,J)=-(GHEFF(I,J)-GAREA(I,J))/
350     & SEAICE_deltaTtherm/AREA(I,J,2,bi,bj)
351     C convert all snow to melt water (fresh water flux)
352     SEAICE_SALT(I,J)=SEAICE_SALT(I,J)
353     & -HSNOW(I,J,bi,bj)/SDF/ICE_DENS
354     HSNOW(I,J,bi,bj)=0.0
355     END IF
356     END IF
357 heimbach 1.2 ENDDO
358     ENDDO
359 mlosch 1.1
360 heimbach 1.2 #ifdef ALLOW_AUTODIFF_TAMC
361 mlosch 1.3 CADJ STORE fice(:,:) = comlev1_bibj,
362     CADJ & key = iicekey, byte = isbyte
363 heimbach 1.2 #endif /* ALLOW_AUTODIFF_TAMC */
364    
365     DO J=1,sNy
366     DO I=1,sNx
367 mlosch 1.1 C NOW GET TOTAL GROWTH RATE in W/m^2, >0 causes ice growth
368     FHEFF(I,J)= FICE(I,J) * AREA(I,J,2,bi,bj)
369     & + QNETO(I,J) * (ONE-AREA(I,J,2,bi,bj))
370     ENDDO
371     ENDDO
372     cph(
373     #ifdef ALLOW_AUTODIFF_TAMC
374     CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
375     CADJ & key = iicekey, byte = isbyte
376     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
377     CADJ & key = iicekey, byte = isbyte
378 mlosch 1.3 CADJ STORE fice(:,:) = comlev1_bibj,
379 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
380 mlosch 1.3 CADJ STORE fheff(:,:) = comlev1_bibj,
381 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
382 mlosch 1.3 CADJ STORE qneto(:,:) = comlev1_bibj,
383 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
384 mlosch 1.3 CADJ STORE qswi(:,:) = comlev1_bibj,
385 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
386 mlosch 1.3 CADJ STORE qswo(:,:) = comlev1_bibj,
387 mlosch 1.1 CADJ & key = iicekey, byte = isbyte
388     #endif /* ALLOW_AUTODIFF_TAMC */
389     cph)
390     DO J=1,sNy
391     DO I=1,sNx
392     C NOW UPDATE AREA
393 mlosch 1.3 GHEFF(I,J) = -SEAICE_deltaTtherm*FHEFF(I,J)*Q0
394     GAREA(I,J) = SEAICE_deltaTtherm*QNETO(I,J)*Q0
395     GHEFF(I,J) = -ONE*MIN(HEFF(I,J,1,bi,bj),GHEFF(I,J))
396     GAREA(I,J) = MAX(ZERO,GAREA(I,J))
397     HCORR(I,J) = MIN(ZERO,GHEFF(I,J))
398 mlosch 1.1 ENDDO
399     ENDDO
400     #ifdef ALLOW_AUTODIFF_TAMC
401     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
402     CADJ & key = iicekey, byte = isbyte
403     #endif
404     DO J=1,sNy
405     DO I=1,sNx
406     GAREA(I,J)=(ONE-AREA(I,J,2,bi,bj))*GAREA(I,J)/HO
407     & +HALF*HCORR(I,J)*AREA(I,J,2,bi,bj)
408     & /(HEFF(I,J,1,bi,bj)+.00001 _d 0)
409     AREA(I,J,1,bi,bj)=AREA(I,J,1,bi,bj)+GAREA(I,J)
410     ENDDO
411     ENDDO
412     #ifdef ALLOW_AUTODIFF_TAMC
413     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
414     CADJ & key = iicekey, byte = isbyte
415     #endif
416     DO J=1,sNy
417     DO I=1,sNx
418    
419     C NOW UPDATE HEFF
420 mlosch 1.3 GHEFF(I,J) = -SEAICE_deltaTtherm*
421     & FICE(I,J)*Q0*AREA(I,J,2,bi,bj)
422     GHEFF(I,J) = -ONE*MIN(HEFF(I,J,1,bi,bj),GHEFF(I,J))
423     HEFF(I,J,1,bi,bj)= HEFF(I,J,1,bi,bj)+GHEFF(I,J)
424     SEAICE_SALT(I,J) = SEAICE_SALT(I,J)+GHEFF(I,J)
425 mlosch 1.1
426     C NOW CALCULATE QNETI UNDER ICE IF ANY
427 mlosch 1.3 QNETI(I,J) = (GHEFF(I,J)-SEAICE_deltaTtherm*
428 mlosch 1.1 & FICE(I,J)*Q0*AREA(I,J,2,bi,bj))/Q0/SEAICE_deltaTtherm
429    
430     C NOW UPDATE OTHER THINGS
431    
432     IF(FICE(I,J).GT.ZERO) THEN
433     C FREEZING, PRECIP ADDED AS SNOW
434 mlosch 1.3 HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+SEAICE_deltaTtherm*
435 mlosch 1.1 & PRECIP(I,J,bi,bj)*AREA(I,J,2,bi,bj)*SDF
436     ELSE
437     C ADD PRECIP AS RAIN, WATER CONVERTED INTO equivalent m of ICE BY 1/ICE_DENS
438 mlosch 1.3 SEAICE_SALT(I,J) = SEAICE_SALT(I,J)
439 mlosch 1.1 & -PRECIP(I,J,bi,bj)*AREA(I,J,2,bi,bj)*
440     & SEAICE_deltaTtherm/ICE_DENS
441     ENDIF
442    
443     C Now add in precip over open water directly into ocean as negative salt
444 mlosch 1.3 SEAICE_SALT(I,J) = SEAICE_SALT(I,J)
445 mlosch 1.1 & -PRECIP(I,J,bi,bj)*(ONE-AREA(I,J,2,bi,bj))
446     & *SEAICE_deltaTtherm/ICE_DENS
447    
448     C Now melt snow if there is residual heat left in surface level
449     C Note that units of YNEG and SEAICE_SALT are m of ice
450 mlosch 1.3 IF( RESID_HEAT(I,J) .GT.ZERO
451     & .AND.HSNOW(I,J,bi,bj).GT.ZERO ) THEN
452     GHEFF(I,J) = MIN( HSNOW(I,J,bi,bj)/SDF/ICE_DENS,
453     & RESID_HEAT(I,J) )
454     YNEG(I,J,bi,bj) = YNEG(I,J,bi,bj)+GHEFF(I,J)
455     HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)-GHEFF(I,J)*SDF*ICE_DENS
456     SEAICE_SALT(I,J) = SEAICE_SALT(I,J)-GHEFF(I,J)
457 mlosch 1.1 ENDIF
458    
459     C NOW GET FRESH WATER FLUX
460 mlosch 1.3 EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*(
461 mlosch 1.1 & EVAP(I,J,bi,bj)*(ONE-AREA(I,J,2,bi,bj))
462     & -RUNOFF(I,J,bi,bj)
463     & +SEAICE_SALT(I,J)*ICE_DENS/SEAICE_deltaTtherm
464     & )
465    
466     C NOW GET TOTAL QNET AND QSW
467 mlosch 1.3 QNET(I,J,bi,bj) = QNETI(I,J) * AREA(I,J,2,bi,bj)
468     & +QNETO(I,J) * (ONE-AREA(I,J,2,bi,bj))
469     QSW(I,J,bi,bj) = QSWI(I,J) * AREA(I,J,2,bi,bj)
470     & +QSWO(I,J) * (ONE-AREA(I,J,2,bi,bj))
471 mlosch 1.1
472     C Now convert YNEG back to deg K.
473 mlosch 1.3 YNEG(I,J,bi,bj) = YNEG(I,J,bi,bj)*recip_dRf(1)*72.0764 _d 0
474 mlosch 1.1
475     C Add YNEG contribution to QNET
476 mlosch 1.3 QNET(I,J,bi,bj) = QNET(I,J,bi,bj)
477 mlosch 1.1 & +YNEG(I,J,bi,bj)/SEAICE_deltaTtherm
478     & *maskC(I,J,kSurface,bi,bj)
479     & *HeatCapacity_Cp*recip_horiVertRatio*rhoConst
480     & *drF(kSurface)*hFacC(i,j,kSurface,bi,bj)
481    
482     ENDDO
483     ENDDO
484    
485     #ifdef SEAICE_DEBUG
486     c CALL PLOT_FIELD_XYRS( UWIND,'Current UWIND ', myIter, myThid )
487     c CALL PLOT_FIELD_XYRS( VWIND,'Current VWIND ', myIter, myThid )
488     CALL PLOT_FIELD_XYRS( GWATX,'Current GWATX ', myIter, myThid )
489     CALL PLOT_FIELD_XYRS( GWATY,'Current GWATY ', myIter, myThid )
490     CML CALL PLOT_FIELD_XYRL( FO,'Current FO ', myIter, myThid )
491     CML CALL PLOT_FIELD_XYRL( FHEFF,'Current FHEFF ', myIter, myThid )
492     CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid )
493     CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid )
494     CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid )
495     DO j=1-OLy,sNy+OLy
496     DO i=1-OLx,sNx+OLx
497     GHEFF(I,J)=SQRT(UICE(I,J,1,bi,bj)**2+VICE(I,J,1,bi,bj)**2)
498     GAREA(I,J)=HEFF(I,J,1,bi,bj)
499     print*,'I J QNET:',I, J, QNET(i,j,bi,bj), QSW(I,J,bi,bj)
500     ENDDO
501     ENDDO
502     CALL PLOT_FIELD_XYRL( GHEFF,'Current UICE ', myIter, myThid )
503     CALL PLOT_FIELD_XYRL( GAREA,'Current HEFF ', myIter, myThid )
504     DO j=1-OLy,sNy+OLy
505     DO i=1-OLx,sNx+OLx
506     if(HEFF(i,j,1,bi,bj).gt.1.) then
507     print '(A,2i4,3f10.2)','#### i j heff theta yneg',i,j,
508     & HEFF(i,j,1,bi,bj),theta(I,J,1,bi,bj),yneg(I,J,bi,bj)
509     print '(A,3f10.2)','QSW, QNET before/after correction',
510     & QSW(I,J,bi,bj),QNETI(I,J)*AREA(I,J,2,bi,bj)+
511     & (ONE-AREA(I,J,2,bi,bj))*QNETO(I,J), QNET(I,J,bi,bj)
512     endif
513     ENDDO
514     ENDDO
515     #endif /* SEAICE_DEBUG */
516    
517     crg Added by Ralf Giering: do we need DO_WE_NEED_THIS ?
518     #define DO_WE_NEED_THIS
519     C NOW ZERO OUTSIDE POINTS
520     #ifdef ALLOW_AUTODIFF_TAMC
521     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
522     CADJ & key = iicekey, byte = isbyte
523     CADJ STORE heff(:,:,:,bi,bj) = comlev1_bibj,
524     CADJ & key = iicekey, byte = isbyte
525     #endif /* ALLOW_AUTODIFF_TAMC */
526     DO J=1,sNy
527     DO I=1,sNx
528     C NOW SET AREA(I,J,1,bi,bj)=0 WHERE NO ICE IS
529     AREA(I,J,1,bi,bj)=MIN(AREA(I,J,1,bi,bj)
530     & ,HEFF(I,J,1,bi,bj)/.0001 _d 0)
531     ENDDO
532     ENDDO
533     #ifdef ALLOW_AUTODIFF_TAMC
534     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
535     CADJ & key = iicekey, byte = isbyte
536     #endif /* ALLOW_AUTODIFF_TAMC */
537     DO J=1,sNy
538     DO I=1,sNx
539     C NOW TRUNCATE AREA
540     #ifdef DO_WE_NEED_THIS
541     AREA(I,J,1,bi,bj)=MIN(ONE,AREA(I,J,1,bi,bj))
542     ENDDO
543     ENDDO
544     #ifdef ALLOW_AUTODIFF_TAMC
545     CADJ STORE area(:,:,:,bi,bj) = comlev1_bibj,
546     CADJ & key = iicekey, byte = isbyte
547     CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,
548     CADJ & key = iicekey, byte = isbyte
549     #endif /* ALLOW_AUTODIFF_TAMC */
550     DO J=1,sNy
551     DO I=1,sNx
552 mlosch 1.3 AREA(I,J,1,bi,bj) = MAX(ZERO,AREA(I,J,1,bi,bj))
553     HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj))
554 mlosch 1.1 #endif
555 mlosch 1.3 AREA(I,J,1,bi,bj) = AREA(I,J,1,bi,bj)*HEFFM(I,J,bi,bj)
556     HEFF(I,J,1,bi,bj) = HEFF(I,J,1,bi,bj)*HEFFM(I,J,bi,bj)
557 mlosch 1.1 #ifdef DO_WE_NEED_THIS
558     c HEFF(I,J,1,bi,bj)=MIN(MAX_HEFF,HEFF(I,J,1,bi,bj))
559     #endif
560 mlosch 1.3 HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj)
561 mlosch 1.1 ENDDO
562     ENDDO
563    
564     #ifdef ALLOW_SEAICE_FLOODING
565     IF ( SEAICEuseFlooding ) THEN
566     C convert snow to ice if submerged
567     DO J=1,sNy
568     DO I=1,sNx
569     hDraft = (HSNOW(I,J,bi,bj)*330. _d 0
570     & +HEFF(I,J,1,bi,bj)*SEAICE_rhoIce)/1000. _d 0
571     hFlood = hDraft - MIN(hDraft,HEFF(I,J,1,bi,bj))
572     HEFF(I,J,1,bi,bj) = HEFF(I,J,1,bi,bj) + hFlood
573 mlosch 1.3 HSNOW(I,J,bi,bj) = MAX(0. _d 0,HSNOW(I,J,bi,bj)-hFlood/SDF)
574 mlosch 1.1 ENDDO
575     ENDDO
576     ENDIF
577     #endif /* ALLOW_SEAICE_FLOODING */
578    
579     #ifdef ATMOSPHERIC_LOADING
580     IF ( useRealFreshWaterFlux ) THEN
581     DO J=1,sNy
582     DO I=1,sNx
583     sIceLoad(i,j,bi,bj) = HEFF(I,J,1,bi,bj)*SEAICE_rhoIce
584     & + HSNOW(I,J,bi,bj)* 330. _d 0
585     ENDDO
586     ENDDO
587     ENDIF
588     #endif
589    
590     ENDDO
591     ENDDO
592    
593     RETURN
594     END

  ViewVC Help
Powered by ViewVC 1.1.22