--- MITgcm/pkg/seaice/seaice_calc_strainrates.F 2014/10/20 03:20:57 1.21 +++ MITgcm/pkg/seaice/seaice_calc_strainrates.F 2017/06/08 15:10:05 1.23 @@ -1,4 +1,4 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_calc_strainrates.F,v 1.21 2014/10/20 03:20:57 gforget Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_calc_strainrates.F,v 1.23 2017/06/08 15:10:05 mlosch Exp $ C $Name: $ #include "SEAICE_OPTIONS.h" @@ -75,6 +75,8 @@ C hFacU, hFacV :: determine the no-slip boundary condition INTEGER k _RS hFacU, hFacV, noSlipFac + _RL third + PARAMETER ( third = 0.333333333333333333333333333 _d 0 ) C auxillary variables that help writing code that C vectorizes even after TAFization _RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) @@ -165,7 +167,38 @@ c$$$ & - hFacU * k2AtZ(i,j,bi,bj) * uave(i,j) ENDDO ENDDO - + IF ( SEAICE_no_slip .AND. SEAICE_2ndOrderBC ) THEN + DO j=1-OLy+2,sNy+OLy-1 + DO i=1-OLx+2,sNx+OLx-1 + hFacU = (_maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj))*third + hFacV = (_maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj))*third + hFacU = hFacU*( _maskW(i,j-2,k,bi,bj)*_maskW(i,j-1,k,bi,bj) + & + _maskW(i,j+1,k,bi,bj)*_maskW(i,j, k,bi,bj) ) + hFacV = hFacV*( _maskS(i-2,j,k,bi,bj)*_maskS(i-1,j,k,bi,bj) + & + _maskS(i+1,j,k,bi,bj)*_maskS(i ,j,k,bi,bj) ) +C right hand sided dv/dx = (9*v(i,j)-v(i+1,j))/(4*dxv(i,j)-dxv(i+1,j)) +C according to a Taylor expansion to 2nd order. We assume that dxv +C varies very slowly, so that the denominator simplifies to 3*dxv(i,j), +C then dv/dx = (6*v(i,j)+3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) +C = 2*v(i,j)/dxv(i,j) + (3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) +C the left hand sided dv/dx is analogously +C = - 2*v(i-1,j)/dxv(i,j) - (3*v(i-1,j)-v(i-2,j))/(3*dxv(i,j)) +C the first term is the first order part, which is already added. +C For e12 we only need 0.5 of this gradient and vave = is either +C 0.5*v(i,j) or 0.5*v(i-1,j) near the boundary so that we need an +C extra factor of 2. This explains the six. du/dy is analogous. +C The masking is ugly, but hopefully effective. + e12Loc(i,j,bi,bj) = e12Loc(i,j,bi,bj) + 0.5 _d 0 * ( + & _recip_dyU(i,j,bi,bj) * ( 6.0 _d 0 * uave(i,j) + & - uFld(i,j-2,bi,bj)*_maskW(i,j-1,k,bi,bj) + & - uFld(i,j+1,bi,bj)*_maskW(i,j ,k,bi,bj) ) * hFacU + & + _recip_dxV(i,j,bi,bj) * ( 6.0 _d 0 * vave(i,j) + & - vFld(i-2,j,bi,bj)*_maskS(i-1,j,k,bi,bj) + & - vFld(i+1,j,bi,bj)*_maskS(i ,j,k,bi,bj) ) * hFacV + & ) + ENDDO + ENDDO + ENDIF ENDDO ENDDO