--- MITgcm/pkg/seaice/seaice_calc_strainrates.F 2009/10/23 08:10:16 1.15 +++ MITgcm/pkg/seaice/seaice_calc_strainrates.F 2017/06/08 15:10:05 1.23 @@ -1,19 +1,34 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_calc_strainrates.F,v 1.15 2009/10/23 08:10:16 mlosch Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/seaice/seaice_calc_strainrates.F,v 1.23 2017/06/08 15:10:05 mlosch Exp $ C $Name: $ #include "SEAICE_OPTIONS.h" +#ifdef ALLOW_OBCS +# include "OBCS_OPTIONS.h" +#else +# define OBCS_UVICE_OLD +#endif +#ifdef ALLOW_AUTODIFF +# include "AUTODIFF_OPTIONS.h" +#endif -CStartOfInterface +CBOP +C !ROUTINE: SEAICE_CALC_STRAINRATES +C !INTERFACE: SUBROUTINE SEAICE_CALC_STRAINRATES( I uFld, vFld, O e11Loc, e22Loc, e12Loc, I iStep, myTime, myIter, myThid ) -C /==========================================================\ -C | SUBROUTINE SEAICE_CALC_STRAINRATES | -C | o compute strain rates from ice velocities | -C |==========================================================| -C | written by Martin Losch, Apr 2007 | -C \==========================================================/ + +C !DESCRIPTION: \bv +C *==========================================================* +C | SUBROUTINE SEAICE_CALC_STRAINRATES +C | o compute strain rates from ice velocities +C *==========================================================* +C | written by Martin Losch, Apr 2007 +C *==========================================================* +C \ev + +C !USES: IMPLICIT NONE C === Global variables === @@ -21,6 +36,7 @@ #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" +#include "SEAICE_SIZE.h" #include "SEAICE_PARAMS.h" #include "SEAICE.h" @@ -28,32 +44,39 @@ # include "tamc.h" #endif +C !INPUT/OUTPUT PARAMETERS: C === Routine arguments === +C uFld :: ice velocity, u-component +C vFld :: ice velocity, v-component +C e11Loc :: strain rate tensor, component 1,1 +C e22Loc :: strain rate tensor, component 2,2 +C e12Loc :: strain rate tensor, component 1,2 C iStep :: Sub-time-step number C myTime :: Simulation time C myIter :: Simulation timestep number C myThid :: My Thread Id. number + _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) + _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) + _RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) + _RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) + _RL e12Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) INTEGER iStep _RL myTime INTEGER myIter INTEGER myThid -C ice velocities - _RL uFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) - _RL vFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) -C strain rate tensor - _RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) - _RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) - _RL e12Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) -CEndOfInterface +CEOP #ifdef SEAICE_CGRID #ifdef SEAICE_ALLOW_DYNAMICS +C !LOCAL VARIABLES: C === Local variables === -C i,j,bi,bj - Loop counters +C i,j,bi,bj :: Loop counters INTEGER i, j, bi, bj -C hFacU, hFacV - determine the no-slip boundary condition +C hFacU, hFacV :: determine the no-slip boundary condition INTEGER k _RS hFacU, hFacV, noSlipFac + _RL third + PARAMETER ( third = 0.333333333333333333333333333 _d 0 ) C auxillary variables that help writing code that C vectorizes even after TAFization _RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) @@ -66,136 +89,128 @@ k = 1 noSlipFac = 0. _d 0 IF ( SEAICE_no_slip ) noSlipFac = 1. _d 0 +C in order repoduce results before fixing a bug in r1.20 comment out +C the following line +CML IF ( SEAICE_no_slip ) noSlipFac = 2. _d 0 C -#ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) C abbreviations on C-points, need to do them in separate loops C for vectorization - DO j=1-Oly,sNy+Oly-1 - DO i=1-Olx,sNx+Olx-1 - dudx(I,J) = _recip_dxF(I,J,bi,bj) * - & (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) - uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) + DO j=1-OLy,sNy+OLy-1 + DO i=1-OLx,sNx+OLx-1 + dudx(i,j) = _recip_dxF(i,j,bi,bj) * + & (uFld(i+1,j,bi,bj)-uFld(i,j,bi,bj)) + uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i+1,j,bi,bj)) ENDDO ENDDO - DO j=1-Oly,sNy+Oly-1 - DO i=1-Olx,sNx+Olx-1 - dvdy(I,J) = _recip_dyF(I,J,bi,bj) * - & (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) - vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) + DO j=1-OLy,sNy+OLy-1 + DO i=1-OLx,sNx+OLx-1 + dvdy(i,j) = _recip_dyF(i,j,bi,bj) * + & (vFld(i,j+1,bi,bj)-vFld(i,j,bi,bj)) + vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i,j+1,bi,bj)) ENDDO ENDDO C evaluate strain rates at C-points - DO j=1-Oly,sNy+Oly-1 - DO i=1-Olx,sNx+Olx-1 - e11Loc(I,J,bi,bj) = dudx(I,J) + vave(I,J) * k2AtC(I,J,bi,bj) - e22Loc(I,J,bi,bj) = dvdy(I,J) + uave(I,J) * k1AtC(I,J,bi,bj) + DO j=1-OLy,sNy+OLy-1 + DO i=1-OLx,sNx+OLx-1 + e11Loc(i,j,bi,bj) = dudx(i,j) + vave(i,j) * k2AtC(i,j,bi,bj) + e22Loc(i,j,bi,bj) = dvdy(i,j) + uave(i,j) * k1AtC(i,j,bi,bj) + ENDDO + ENDDO +#ifndef OBCS_UVICE_OLD +C-- for OBCS: assume no gradient beyong OB + DO j=1-OLy,sNy+OLy-1 + DO i=1-OLx,sNx+OLx-1 + e11Loc(i,j,bi,bj) = e11Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) + e22Loc(i,j,bi,bj) = e22Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) ENDDO ENDDO +#endif /* OBCS_UVICE_OLD */ + C abbreviations at Z-points, need to do them in separate loops C for vectorization - DO j=1-Oly+1,sNy+Oly - DO i=1-Olx+1,sNx+Olx - dudy(I,J) = ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) - & * _recip_dyU(I,J,bi,bj) - uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) + DO j=1-OLy+1,sNy+OLy + DO i=1-OLx+1,sNx+OLx + dudy(i,j) = ( uFld(i,j,bi,bj) - uFld(i ,j-1,bi,bj) ) + & * _recip_dyU(i,j,bi,bj) + uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i ,j-1,bi,bj)) ENDDO ENDDO - DO j=1-Oly+1,sNy+Oly - DO i=1-Olx+1,sNx+Olx - dvdx(I,J) = ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) - & * _recip_dxV(I,J,bi,bj) - vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) + DO j=1-OLy+1,sNy+OLy + DO i=1-OLx+1,sNx+OLx + dvdx(i,j) = ( vFld(i,j,bi,bj) - vFld(i-1,j ,bi,bj) ) + & * _recip_dxV(i,j,bi,bj) + vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i-1,j ,bi,bj)) ENDDO ENDDO C evaluate strain rates at Z-points - DO j=1-Oly+1,sNy+Oly - DO i=1-Olx+1,sNx+Olx + DO j=1-OLy+1,sNy+OLy + DO i=1-OLx+1,sNx+OLx hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) - e12Loc(I,J,bi,bj) = 0.5 _d 0 * ( - & dudy(I,J) + dvdx(I,J) - & - k1AtZ(I,J,bi,bj) * vave(I,J) - & - k2AtZ(I,J,bi,bj) * uave(I,J) + e12Loc(i,j,bi,bj) = 0.5 _d 0 * ( + & dudy(i,j) + dvdx(i,j) + & - k1AtZ(i,j,bi,bj) * vave(i,j) + & - k2AtZ(i,j,bi,bj) * uave(i,j) & ) - & *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) - & *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) - & + 2.0 _d 0 * noSlipFac * ( - & 2.0 _d 0 * uave(I,J) * _recip_dyU(I,J,bi,bj) * hFacU - & + 2.0 _d 0 * vave(I,J) * _recip_dxV(I,J,bi,bj) * hFacV + & *maskC(i ,j ,k,bi,bj)*maskC(i-1,j ,k,bi,bj) + & *maskC(i ,j-1,k,bi,bj)*maskC(i-1,j-1,k,bi,bj) + & + noSlipFac * ( + & 2.0 _d 0 * uave(i,j) * _recip_dyU(i,j,bi,bj) * hFacU + & + 2.0 _d 0 * vave(i,j) * _recip_dxV(i,j,bi,bj) * hFacV & ) C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 C accross the boundary; this is already accomplished by masking so C that the following lines are not necessary -c$$$ & - hFacV * k1AtZ(I,J,bi,bj) * vave(I,J) -c$$$ & - hFacU * k2AtZ(I,J,bi,bj) * uave(I,J) +c$$$ & - hFacV * k1AtZ(i,j,bi,bj) * vave(i,j) +c$$$ & - hFacU * k2AtZ(i,j,bi,bj) * uave(i,j) ENDDO ENDDO - - ENDDO - ENDDO -#else -C this the old and incomplete discretization, here I also erroneously -C used finite-volumes to discretize the strain rates - DO bj=myByLo(myThid),myByHi(myThid) - DO bi=myBxLo(myThid),myBxHi(myThid) - DO j=1-Oly,sNy+Oly-1 - DO i=1-Olx,sNx+Olx-1 -C evaluate strain rates - e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * - & (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) - & -HALF* - & (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) - & * _tanPhiAtU(I,J,bi,bj)*recip_rSphere - e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * - & (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) -C one metric term is missing - ENDDO - ENDDO - DO j=1-Oly+1,sNy+Oly - DO i=1-Olx+1,sNx+Olx - e12Loc(I,J,bi,bj) = HALF*( - & (uFld(I ,J ,bi,bj) * _dxC(I ,J ,bi,bj) - & -uFld(I ,J-1,bi,bj) * _dxC(I ,J-1,bi,bj) - & +vFld(I ,J ,bi,bj) * _dyC(I ,J ,bi,bj) - & -vFld(I-1,J ,bi,bj) * _dyC(I-1,J ,bi,bj)) - & * recip_rAz(I,J,bi,bj) - & + - & 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) - & * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) - & *recip_rSphere - & ) - & *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) - & *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) -C one metric term is missing - ENDDO - ENDDO - IF ( SEAICE_no_slip ) THEN -C no slip boundary conditions apply only to e12Loc - DO j=1-Oly+1,sNy+Oly - DO i=1-Olx+1,sNx+Olx - hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) - hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) - - e12Loc(I,J,bi,bj) = e12Loc(I,J,bi,bj) - & + recip_rAz(i,j,bi,bj) * 2. _d 0 * - & ( hFacU * ( _dxC(i,j-1,bi,bj)*uFld(i,j ,bi,bj) - & + _dxC(i,j, bi,bj)*uFld(i,j-1,bi,bj) ) - & + hFacV * ( _dyC(i-1,j,bi,bj)*vFld(i ,j,bi,bj) - & + _dyC(i, j,bi,bj)*vFld(i-1,j,bi,bj) ) ) - & - hFacU - & * 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) - & * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) - & *recip_rSphere -C one metric term is missing + IF ( SEAICE_no_slip .AND. SEAICE_2ndOrderBC ) THEN + DO j=1-OLy+2,sNy+OLy-1 + DO i=1-OLx+2,sNx+OLx-1 + hFacU = (_maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj))*third + hFacV = (_maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj))*third + hFacU = hFacU*( _maskW(i,j-2,k,bi,bj)*_maskW(i,j-1,k,bi,bj) + & + _maskW(i,j+1,k,bi,bj)*_maskW(i,j, k,bi,bj) ) + hFacV = hFacV*( _maskS(i-2,j,k,bi,bj)*_maskS(i-1,j,k,bi,bj) + & + _maskS(i+1,j,k,bi,bj)*_maskS(i ,j,k,bi,bj) ) +C right hand sided dv/dx = (9*v(i,j)-v(i+1,j))/(4*dxv(i,j)-dxv(i+1,j)) +C according to a Taylor expansion to 2nd order. We assume that dxv +C varies very slowly, so that the denominator simplifies to 3*dxv(i,j), +C then dv/dx = (6*v(i,j)+3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) +C = 2*v(i,j)/dxv(i,j) + (3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) +C the left hand sided dv/dx is analogously +C = - 2*v(i-1,j)/dxv(i,j) - (3*v(i-1,j)-v(i-2,j))/(3*dxv(i,j)) +C the first term is the first order part, which is already added. +C For e12 we only need 0.5 of this gradient and vave = is either +C 0.5*v(i,j) or 0.5*v(i-1,j) near the boundary so that we need an +C extra factor of 2. This explains the six. du/dy is analogous. +C The masking is ugly, but hopefully effective. + e12Loc(i,j,bi,bj) = e12Loc(i,j,bi,bj) + 0.5 _d 0 * ( + & _recip_dyU(i,j,bi,bj) * ( 6.0 _d 0 * uave(i,j) + & - uFld(i,j-2,bi,bj)*_maskW(i,j-1,k,bi,bj) + & - uFld(i,j+1,bi,bj)*_maskW(i,j ,k,bi,bj) ) * hFacU + & + _recip_dxV(i,j,bi,bj) * ( 6.0 _d 0 * vave(i,j) + & - vFld(i-2,j,bi,bj)*_maskS(i-1,j,k,bi,bj) + & - vFld(i+1,j,bi,bj)*_maskS(i ,j,k,bi,bj) ) * hFacV + & ) ENDDO ENDDO - ENDIF ENDDO ENDDO -#endif /* SEAICE_OLD_AND_BAD_DISCRETIZATION */ + +#ifdef ALLOW_AUTODIFF_TAMC +#ifdef SEAICE_DYN_STABLE_ADJOINT +cgf zero out adjoint fields to stabilize pkg/seaice dyna. adjoint + CALL ZERO_ADJ( 1, e11Loc, myThid) + CALL ZERO_ADJ( 1, e12Loc, myThid) + CALL ZERO_ADJ( 1, e22Loc, myThid) +#endif +#endif /* ALLOW_AUTODIFF_TAMC */ + #endif /* SEAICE_ALLOW_DYNAMICS */ #endif /* SEAICE_CGRID */ RETURN