4 |
#include "SEAICE_OPTIONS.h" |
#include "SEAICE_OPTIONS.h" |
5 |
|
|
6 |
CStartOfInterface |
CStartOfInterface |
7 |
SUBROUTINE SEAICE_CALC_STRAINRATES( |
SUBROUTINE SEAICE_CALC_STRAINRATES( |
8 |
I uFld, vFld, |
I uFld, vFld, |
9 |
O e11, e22, e12, |
O e11Loc, e22Loc, e12Loc, |
10 |
I myThid ) |
I iStep, myTime, myIter, myThid ) |
11 |
C /==========================================================\ |
C /==========================================================\ |
12 |
C | SUBROUTINE SEAICE_CALC_STRAINRATES | |
C | SUBROUTINE SEAICE_CALC_STRAINRATES | |
13 |
C | o compute strain rates from ice velocities | |
C | o compute strain rates from ice velocities | |
22 |
#include "PARAMS.h" |
#include "PARAMS.h" |
23 |
#include "GRID.h" |
#include "GRID.h" |
24 |
#include "SEAICE_PARAMS.h" |
#include "SEAICE_PARAMS.h" |
25 |
|
#include "SEAICE.h" |
26 |
|
|
27 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
28 |
# include "tamc.h" |
# include "tamc.h" |
29 |
#endif |
#endif |
30 |
|
|
31 |
C === Routine arguments === |
C === Routine arguments === |
32 |
C myThid - Thread no. that called this routine. |
C iStep :: Sub-time-step number |
33 |
|
C myTime :: Simulation time |
34 |
|
C myIter :: Simulation timestep number |
35 |
|
C myThid :: My Thread Id. number |
36 |
|
INTEGER iStep |
37 |
|
_RL myTime |
38 |
|
INTEGER myIter |
39 |
INTEGER myThid |
INTEGER myThid |
40 |
C ice velocities |
C ice velocities |
41 |
_RL uFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
_RL uFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
42 |
_RL vFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
_RL vFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
43 |
C strain rate tensor |
C strain rate tensor |
44 |
_RL e11 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
45 |
_RL e22 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
46 |
_RL e12 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e12Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
47 |
CEndOfInterface |
CEndOfInterface |
48 |
|
|
49 |
#ifdef SEAICE_CGRID |
#ifdef SEAICE_CGRID |
51 |
C === Local variables === |
C === Local variables === |
52 |
C i,j,bi,bj - Loop counters |
C i,j,bi,bj - Loop counters |
53 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
54 |
C hFacU, hFacV - determine the no-slip boundary condition |
C hFacU, hFacV - determine the no-slip boundary condition |
55 |
INTEGER k |
INTEGER k |
56 |
_RS hFacU, hFacV |
_RS hFacU, hFacV, noSlipFac |
57 |
|
C auxillary variables that help writing code that |
58 |
|
C vectorizes even after TAFization |
59 |
|
_RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
60 |
|
_RL dvdy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
|
_RL dudy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
|
_RL dvdx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
63 |
|
_RL uave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
64 |
|
_RL vave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
65 |
|
|
66 |
k = 1 |
k = 1 |
67 |
|
noSlipFac = 0. _d 0 |
68 |
|
IF ( SEAICE_no_slip ) noSlipFac = 1. _d 0 |
69 |
C |
C |
70 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
71 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
72 |
|
C abbreviations on C-points, need to do them in separate loops |
73 |
|
C for vectorization |
74 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-Oly,sNy+Oly-1 |
75 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-Olx,sNx+Olx-1 |
76 |
C evaluate strain rates |
dudx(I,J) = _recip_dxF(I,J,bi,bj) * |
|
e11(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
|
77 |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
78 |
& -HALF* |
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) |
79 |
& (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
ENDDO |
80 |
& * _tanPhiAtU(I,J,bi,bj)*recip_rSphere |
ENDDO |
81 |
e22(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
DO j=1-Oly,sNy+Oly-1 |
82 |
|
DO i=1-Olx,sNx+Olx-1 |
83 |
|
dvdy(I,J) = _recip_dyF(I,J,bi,bj) * |
84 |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
85 |
C one metric term is missing |
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
86 |
|
ENDDO |
87 |
|
ENDDO |
88 |
|
C evaluate strain rates at C-points |
89 |
|
DO j=1-Oly,sNy+Oly-1 |
90 |
|
DO i=1-Olx,sNx+Olx-1 |
91 |
|
e11Loc(I,J,bi,bj) = dudx(I,J) + vave(I,J) * k2AtC(I,J,bi,bj) |
92 |
|
e22Loc(I,J,bi,bj) = dvdy(I,J) + uave(I,J) * k1AtC(I,J,bi,bj) |
93 |
|
ENDDO |
94 |
|
ENDDO |
95 |
|
C abbreviations at Z-points, need to do them in separate loops |
96 |
|
C for vectorization |
97 |
|
DO j=1-Oly+1,sNy+Oly |
98 |
|
DO i=1-Olx+1,sNx+Olx |
99 |
|
dudy(I,J) = ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) |
100 |
|
& * _recip_dyU(I,J,bi,bj) |
101 |
|
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
102 |
|
ENDDO |
103 |
|
ENDDO |
104 |
|
DO j=1-Oly+1,sNy+Oly |
105 |
|
DO i=1-Olx+1,sNx+Olx |
106 |
|
dvdx(I,J) = ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) |
107 |
|
& * _recip_dxV(I,J,bi,bj) |
108 |
|
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
109 |
ENDDO |
ENDDO |
110 |
ENDDO |
ENDDO |
111 |
|
C evaluate strain rates at Z-points |
112 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-Oly+1,sNy+Oly |
113 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-Olx+1,sNx+Olx |
114 |
e12(I,J,bi,bj) = HALF*( |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
115 |
& (uFld(I ,J ,bi,bj) * _dxC(I ,J ,bi,bj) |
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
116 |
& -uFld(I ,J-1,bi,bj) * _dxC(I ,J-1,bi,bj) |
e12Loc(I,J,bi,bj) = 0.5 _d 0 * ( |
117 |
& +vFld(I ,J ,bi,bj) * _dyC(I ,J ,bi,bj) |
& dudy(I,J) + dvdx(I,J) |
118 |
& -vFld(I-1,J ,bi,bj) * _dyC(I-1,J ,bi,bj)) |
& - k1AtZ(I,J,bi,bj) * vave(I,J) |
119 |
& * recip_rAz(I,J,bi,bj) |
& - k2AtZ(I,J,bi,bj) * uave(I,J) |
|
& + |
|
|
& 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
|
|
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
|
|
& *recip_rSphere |
|
120 |
& ) |
& ) |
121 |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
122 |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
123 |
C one metric term is missing |
& + 2.0 _d 0 * noSlipFac * ( |
124 |
|
& 2.0 _d 0 * uave(I,J) * _recip_dyU(I,J,bi,bj) * hFacU |
125 |
|
& + 2.0 _d 0 * vave(I,J) * _recip_dxV(I,J,bi,bj) * hFacV |
126 |
|
& ) |
127 |
|
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
128 |
|
C accross the boundary; this is already accomplished by masking so |
129 |
|
C that the following lines are not necessary |
130 |
|
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) * vave(I,J) |
131 |
|
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) * uave(I,J) |
132 |
ENDDO |
ENDDO |
133 |
ENDDO |
ENDDO |
|
IF ( SEAICE_no_slip ) THEN |
|
|
C no slip boundary conditions apply only to e12 |
|
|
DO j=1-Oly+1,sNy+Oly |
|
|
DO i=1-Olx+1,sNx+Olx |
|
|
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
|
|
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
|
|
|
|
|
e12(I,J,bi,bj) = e12(I,J,bi,bj) |
|
|
& + recip_rAz(i,j,bi,bj) * |
|
|
& ( hFacU * ( _dxC(i,j ,bi,bj)*uFld(i,j ,bi,bj) |
|
|
& + _dxC(i,j-1,bi,bj)*uFld(i,j-1,bi,bj) ) |
|
|
& + hFacV * ( _dyC(i ,j,bi,bj)*vFld(i ,j,bi,bj) |
|
|
& + _dyC(i-1,j,bi,bj)*vFld(i-1,j,bi,bj) ) ) |
|
|
& - hFacU |
|
|
& * 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
|
|
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
|
|
& *recip_rSphere |
|
|
C one metric term is missing |
|
|
ENDDO |
|
|
ENDDO |
|
134 |
|
|
|
ENDIF |
|
135 |
ENDDO |
ENDDO |
136 |
ENDDO |
ENDDO |
137 |
|
|
138 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
139 |
|
#ifdef SEAICE_DYN_STABLE_ADJOINT |
140 |
|
cgf zero out adjoint fields to stabilize pkg/seaice dyna. adjoint |
141 |
|
CALL ZERO_ADJ( 1, e11Loc, myThid) |
142 |
|
CALL ZERO_ADJ( 1, e12Loc, myThid) |
143 |
|
CALL ZERO_ADJ( 1, e22Loc, myThid) |
144 |
|
#endif |
145 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
146 |
|
|
147 |
#endif /* SEAICE_ALLOW_DYNAMICS */ |
#endif /* SEAICE_ALLOW_DYNAMICS */ |
148 |
#endif /* SEAICE_CGRID */ |
#endif /* SEAICE_CGRID */ |
149 |
RETURN |
RETURN |