7 |
SUBROUTINE SEAICE_CALC_STRAINRATES( |
SUBROUTINE SEAICE_CALC_STRAINRATES( |
8 |
I uFld, vFld, |
I uFld, vFld, |
9 |
O e11Loc, e22Loc, e12Loc, |
O e11Loc, e22Loc, e12Loc, |
10 |
I kSize, iStep, myTime, myIter, myThid ) |
I iStep, myTime, myIter, myThid ) |
11 |
C /==========================================================\ |
C /==========================================================\ |
12 |
C | SUBROUTINE SEAICE_CALC_STRAINRATES | |
C | SUBROUTINE SEAICE_CALC_STRAINRATES | |
13 |
C | o compute strain rates from ice velocities | |
C | o compute strain rates from ice velocities | |
33 |
C myTime :: Simulation time |
C myTime :: Simulation time |
34 |
C myIter :: Simulation timestep number |
C myIter :: Simulation timestep number |
35 |
C myThid :: My Thread Id. number |
C myThid :: My Thread Id. number |
|
C kSize :: length of 3rd dimension of velocity variables |
|
36 |
INTEGER iStep |
INTEGER iStep |
37 |
_RL myTime |
_RL myTime |
38 |
INTEGER myIter |
INTEGER myIter |
39 |
INTEGER myThid |
INTEGER myThid |
|
INTEGER kSize |
|
40 |
C ice velocities |
C ice velocities |
41 |
_RL uFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly,kSize,nSx,nSy) |
_RL uFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
42 |
_RL vFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly,kSize,nSx,nSy) |
_RL vFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
43 |
C strain rate tensor |
C strain rate tensor |
44 |
_RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
45 |
_RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
51 |
C === Local variables === |
C === Local variables === |
52 |
C i,j,bi,bj - Loop counters |
C i,j,bi,bj - Loop counters |
53 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
54 |
C hFacU, hFacV - determine the no-slip boundary condition |
C hFacU, hFacV - determine the no-slip boundary condition |
55 |
INTEGER k |
INTEGER k |
56 |
_RS hFacU, hFacV, noSlipFac |
_RS hFacU, hFacV, noSlipFac |
57 |
|
C auxillary variables that help writing code that |
58 |
|
C vectorizes even after TAFization |
59 |
|
_RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
60 |
|
_RL dvdy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
|
_RL dudy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
|
_RL dvdx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
63 |
|
_RL uave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
64 |
|
_RL vave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
65 |
|
|
66 |
k = 1 |
k = 1 |
67 |
noSlipFac = 0. _d 0 |
noSlipFac = 0. _d 0 |
70 |
#ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION |
#ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION |
71 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
72 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
73 |
|
C abbreviations on C-points, need to do them in separate loops |
74 |
|
C for vectorization |
75 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-Oly,sNy+Oly-1 |
76 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-Olx,sNx+Olx-1 |
77 |
C evaluate strain rates |
dudx(I,J) = _recip_dxF(I,J,bi,bj) * |
78 |
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
79 |
& (uFld(I+1,J,1,bi,bj)-uFld(I,J,1,bi,bj)) |
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) |
80 |
& +HALF* |
ENDDO |
81 |
& (vFld(I,J,1,bi,bj)+vFld(I,J+1,1,bi,bj)) |
ENDDO |
82 |
& * k2AtC(I,J,bi,bj) |
DO j=1-Oly,sNy+Oly-1 |
83 |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
DO i=1-Olx,sNx+Olx-1 |
84 |
& (vFld(I,J+1,1,bi,bj)-vFld(I,J,1,bi,bj)) |
dvdy(I,J) = _recip_dyF(I,J,bi,bj) * |
85 |
& +HALF* |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
86 |
& (uFld(I,J,1,bi,bj)+uFld(I+1,J,1,bi,bj)) |
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
87 |
& * k1AtC(I,J,bi,bj) |
ENDDO |
88 |
|
ENDDO |
89 |
|
C evaluate strain rates at C-points |
90 |
|
DO j=1-Oly,sNy+Oly-1 |
91 |
|
DO i=1-Olx,sNx+Olx-1 |
92 |
|
e11Loc(I,J,bi,bj) = dudx(I,J) + vave(I,J) * k2AtC(I,J,bi,bj) |
93 |
|
e22Loc(I,J,bi,bj) = dvdy(I,J) + uave(I,J) * k1AtC(I,J,bi,bj) |
94 |
ENDDO |
ENDDO |
95 |
ENDDO |
ENDDO |
96 |
|
C abbreviations at Z-points, need to do them in separate loops |
97 |
|
C for vectorization |
98 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-Oly+1,sNy+Oly |
99 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-Olx+1,sNx+Olx |
100 |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
dudy(I,J) = ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) |
|
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
|
|
e12Loc(I,J,bi,bj) = HALF*( |
|
|
& ( uFld(I,J,1,bi,bj) - uFld(I ,J-1,1,bi,bj) ) |
|
101 |
& * _recip_dyU(I,J,bi,bj) |
& * _recip_dyU(I,J,bi,bj) |
102 |
& + ( vFld(I,J,1,bi,bj) - vFld(I-1,J ,1,bi,bj) ) |
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
103 |
|
ENDDO |
104 |
|
ENDDO |
105 |
|
DO j=1-Oly+1,sNy+Oly |
106 |
|
DO i=1-Olx+1,sNx+Olx |
107 |
|
dvdx(I,J) = ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) |
108 |
& * _recip_dxV(I,J,bi,bj) |
& * _recip_dxV(I,J,bi,bj) |
109 |
& - k1AtZ(I,J,bi,bj) |
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
110 |
& * 0.5 _d 0 * (vFld(I,J,1,bi,bj)+vFld(I-1,J ,1,bi,bj)) |
ENDDO |
111 |
& - k2AtZ(I,J,bi,bj) |
ENDDO |
112 |
& * 0.5 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
C evaluate strain rates at Z-points |
113 |
|
DO j=1-Oly+1,sNy+Oly |
114 |
|
DO i=1-Olx+1,sNx+Olx |
115 |
|
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
116 |
|
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
117 |
|
e12Loc(I,J,bi,bj) = 0.5 _d 0 * ( |
118 |
|
& dudy(I,J) + dvdx(I,J) |
119 |
|
& - k1AtZ(I,J,bi,bj) * vave(I,J) |
120 |
|
& - k2AtZ(I,J,bi,bj) * uave(I,J) |
121 |
& ) |
& ) |
122 |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
123 |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
124 |
& + 2.0 _d 0 * noSlipFac * ( |
& + 2.0 _d 0 * noSlipFac * ( |
125 |
& ( uFld(I,J,1,bi,bj) + uFld(I ,J-1,1,bi,bj) ) |
& 2.0 _d 0 * uave(I,J) * _recip_dyU(I,J,bi,bj) * hFacU |
126 |
& * _recip_dyU(I,J,bi,bj) * hFacU |
& + 2.0 _d 0 * vave(I,J) * _recip_dxV(I,J,bi,bj) * hFacV |
|
& + ( vFld(I,J,1,bi,bj) + vFld(I-1,J ,1,bi,bj) ) |
|
|
& * _recip_dxV(I,J,bi,bj) * hFacV |
|
127 |
& ) |
& ) |
128 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
129 |
C accross the boundary; this is already accomplished by masking so |
C accross the boundary; this is already accomplished by masking so |
130 |
C that the following lines are not necessary |
C that the following lines are not necessary |
131 |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) * vave(I,J) |
132 |
c$$$ & * 0.5 _d 0 * (vFld(I,J,1,bi,bj)+vFld(I-1,J ,1,bi,bj)) |
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) * uave(I,J) |
|
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) |
|
|
c$$$ & * 0.5 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
|
133 |
ENDDO |
ENDDO |
134 |
ENDDO |
ENDDO |
135 |
|
|
|
c$$$ ENDIF |
|
136 |
ENDDO |
ENDDO |
137 |
ENDDO |
ENDDO |
138 |
#else |
#else |
144 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-Olx,sNx+Olx-1 |
145 |
C evaluate strain rates |
C evaluate strain rates |
146 |
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
147 |
& (uFld(I+1,J,1,bi,bj)-uFld(I,J,1,bi,bj)) |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
148 |
& -HALF* |
& -HALF* |
149 |
& (vFld(I,J,1,bi,bj)+vFld(I,J+1,1,bi,bj)) |
& (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
150 |
& * _tanPhiAtU(I,J,bi,bj)*recip_rSphere |
& * _tanPhiAtU(I,J,bi,bj)*recip_rSphere |
151 |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
152 |
& (vFld(I,J+1,1,bi,bj)-vFld(I,J,1,bi,bj)) |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
153 |
C one metric term is missing |
C one metric term is missing |
154 |
ENDDO |
ENDDO |
155 |
ENDDO |
ENDDO |
156 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-Oly+1,sNy+Oly |
157 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-Olx+1,sNx+Olx |
158 |
e12Loc(I,J,bi,bj) = HALF*( |
e12Loc(I,J,bi,bj) = HALF*( |
159 |
& (uFld(I ,J ,1,bi,bj) * _dxC(I ,J ,bi,bj) |
& (uFld(I ,J ,bi,bj) * _dxC(I ,J ,bi,bj) |
160 |
& -uFld(I ,J-1,1,bi,bj) * _dxC(I ,J-1,bi,bj) |
& -uFld(I ,J-1,bi,bj) * _dxC(I ,J-1,bi,bj) |
161 |
& +vFld(I ,J ,1,bi,bj) * _dyC(I ,J ,bi,bj) |
& +vFld(I ,J ,bi,bj) * _dyC(I ,J ,bi,bj) |
162 |
& -vFld(I-1,J ,1,bi,bj) * _dyC(I-1,J ,bi,bj)) |
& -vFld(I-1,J ,bi,bj) * _dyC(I-1,J ,bi,bj)) |
163 |
& * recip_rAz(I,J,bi,bj) |
& * recip_rAz(I,J,bi,bj) |
164 |
& + |
& + |
165 |
& 0.25 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
& 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
166 |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
167 |
& *recip_rSphere |
& *recip_rSphere |
168 |
& ) |
& ) |
180 |
|
|
181 |
e12Loc(I,J,bi,bj) = e12Loc(I,J,bi,bj) |
e12Loc(I,J,bi,bj) = e12Loc(I,J,bi,bj) |
182 |
& + recip_rAz(i,j,bi,bj) * 2. _d 0 * |
& + recip_rAz(i,j,bi,bj) * 2. _d 0 * |
183 |
& ( hFacU * ( _dxC(i,j-1,bi,bj)*uFld(i,j ,1,bi,bj) |
& ( hFacU * ( _dxC(i,j-1,bi,bj)*uFld(i,j ,bi,bj) |
184 |
& + _dxC(i,j, bi,bj)*uFld(i,j-1,1,bi,bj) ) |
& + _dxC(i,j, bi,bj)*uFld(i,j-1,bi,bj) ) |
185 |
& + hFacV * ( _dyC(i-1,j,bi,bj)*vFld(i ,j,1,bi,bj) |
& + hFacV * ( _dyC(i-1,j,bi,bj)*vFld(i ,j,bi,bj) |
186 |
& + _dyC(i, j,bi,bj)*vFld(i-1,j,1,bi,bj) ) ) |
& + _dyC(i, j,bi,bj)*vFld(i-1,j,bi,bj) ) ) |
187 |
& - hFacU |
& - hFacU |
188 |
& * 0.25 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
& * 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
189 |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
190 |
& *recip_rSphere |
& *recip_rSphere |
191 |
C one metric term is missing |
C one metric term is missing |