51 |
C === Local variables === |
C === Local variables === |
52 |
C i,j,bi,bj - Loop counters |
C i,j,bi,bj - Loop counters |
53 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
54 |
C hFacU, hFacV - determine the no-slip boundary condition |
C hFacU, hFacV - determine the no-slip boundary condition |
55 |
INTEGER k |
INTEGER k |
56 |
_RS hFacU, hFacV, noSlipFac |
_RS hFacU, hFacV, noSlipFac |
57 |
|
C auxillary variables that help writing code that |
58 |
|
C vectorizes even after TAFization |
59 |
|
_RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
60 |
|
_RL dvdy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
|
_RL dudy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
|
_RL dvdx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
63 |
|
_RL uave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
64 |
|
_RL vave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
65 |
|
|
66 |
k = 1 |
k = 1 |
67 |
noSlipFac = 0. _d 0 |
noSlipFac = 0. _d 0 |
70 |
#ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION |
#ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION |
71 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
72 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
73 |
|
C abbreviations on C-points, need to do them in separate loops |
74 |
|
C for vectorization |
75 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-Oly,sNy+Oly-1 |
76 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-Olx,sNx+Olx-1 |
77 |
C evaluate strain rates |
dudx(I,J) = _recip_dxF(I,J,bi,bj) * |
|
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
|
78 |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
79 |
& +HALF* |
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) |
80 |
& (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
ENDDO |
81 |
& * k2AtC(I,J,bi,bj) |
ENDDO |
82 |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
DO j=1-Oly,sNy+Oly-1 |
83 |
|
DO i=1-Olx,sNx+Olx-1 |
84 |
|
dvdy(I,J) = _recip_dyF(I,J,bi,bj) * |
85 |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
86 |
& +HALF* |
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
|
& (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) |
|
|
& * k1AtC(I,J,bi,bj) |
|
87 |
ENDDO |
ENDDO |
88 |
ENDDO |
ENDDO |
89 |
|
C evaluate strain rates at C-points |
90 |
|
DO j=1-Oly,sNy+Oly-1 |
91 |
|
DO i=1-Olx,sNx+Olx-1 |
92 |
|
e11Loc(I,J,bi,bj) = dudx(I,J) + vave(I,J) * k2AtC(I,J,bi,bj) |
93 |
|
e22Loc(I,J,bi,bj) = dvdy(I,J) + uave(I,J) * k1AtC(I,J,bi,bj) |
94 |
|
ENDDO |
95 |
|
ENDDO |
96 |
|
C abbreviations at Z-points, need to do them in separate loops |
97 |
|
C for vectorization |
98 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-Oly+1,sNy+Oly |
99 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-Olx+1,sNx+Olx |
100 |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
dudy(I,J) = ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) |
|
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
|
|
e12Loc(I,J,bi,bj) = HALF*( |
|
|
& ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) |
|
101 |
& * _recip_dyU(I,J,bi,bj) |
& * _recip_dyU(I,J,bi,bj) |
102 |
& + ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) |
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
103 |
|
ENDDO |
104 |
|
ENDDO |
105 |
|
DO j=1-Oly+1,sNy+Oly |
106 |
|
DO i=1-Olx+1,sNx+Olx |
107 |
|
dvdx(I,J) = ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) |
108 |
& * _recip_dxV(I,J,bi,bj) |
& * _recip_dxV(I,J,bi,bj) |
109 |
& - k1AtZ(I,J,bi,bj) |
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
110 |
& * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
ENDDO |
111 |
& - k2AtZ(I,J,bi,bj) |
ENDDO |
112 |
& * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
C evaluate strain rates at Z-points |
113 |
|
DO j=1-Oly+1,sNy+Oly |
114 |
|
DO i=1-Olx+1,sNx+Olx |
115 |
|
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
116 |
|
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
117 |
|
e12Loc(I,J,bi,bj) = 0.5 _d 0 * ( |
118 |
|
& dudy(I,J) + dvdx(I,J) |
119 |
|
& - k1AtZ(I,J,bi,bj) * vave(I,J) |
120 |
|
& - k2AtZ(I,J,bi,bj) * uave(I,J) |
121 |
& ) |
& ) |
122 |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
123 |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
124 |
& + 2.0 _d 0 * noSlipFac * ( |
& + 2.0 _d 0 * noSlipFac * ( |
125 |
& ( uFld(I,J,bi,bj) + uFld(I ,J-1,bi,bj) ) |
& 2.0 _d 0 * uave(I,J) * _recip_dyU(I,J,bi,bj) * hFacU |
126 |
& * _recip_dyU(I,J,bi,bj) * hFacU |
& + 2.0 _d 0 * vave(I,J) * _recip_dxV(I,J,bi,bj) * hFacV |
|
& + ( vFld(I,J,bi,bj) + vFld(I-1,J ,bi,bj) ) |
|
|
& * _recip_dxV(I,J,bi,bj) * hFacV |
|
127 |
& ) |
& ) |
128 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
129 |
C accross the boundary; this is already accomplished by masking so |
C accross the boundary; this is already accomplished by masking so |
130 |
C that the following lines are not necessary |
C that the following lines are not necessary |
131 |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) * vave(I,J) |
132 |
c$$$ & * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) * uave(I,J) |
|
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) |
|
|
c$$$ & * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
|
133 |
ENDDO |
ENDDO |
134 |
ENDDO |
ENDDO |
135 |
|
|
|
c$$$ ENDIF |
|
136 |
ENDDO |
ENDDO |
137 |
ENDDO |
ENDDO |
138 |
#else |
#else |
196 |
ENDDO |
ENDDO |
197 |
ENDDO |
ENDDO |
198 |
#endif /* SEAICE_OLD_AND_BAD_DISCRETIZATION */ |
#endif /* SEAICE_OLD_AND_BAD_DISCRETIZATION */ |
199 |
|
|
200 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
201 |
|
#ifdef SEAICE_DYN_STABLE_ADJOINT |
202 |
|
cgf zero out adjoint fields to stabilize pkg/seaice dyna. adjoint |
203 |
|
CALL ZERO_ADJ( 1, e11Loc, myThid) |
204 |
|
CALL ZERO_ADJ( 1, e12Loc, myThid) |
205 |
|
CALL ZERO_ADJ( 1, e22Loc, myThid) |
206 |
|
#endif |
207 |
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
208 |
|
|
209 |
#endif /* SEAICE_ALLOW_DYNAMICS */ |
#endif /* SEAICE_ALLOW_DYNAMICS */ |
210 |
#endif /* SEAICE_CGRID */ |
#endif /* SEAICE_CGRID */ |
211 |
RETURN |
RETURN |