| 51 | 
 C     === Local variables === | 
 C     === Local variables === | 
| 52 | 
 C     i,j,bi,bj - Loop counters | 
 C     i,j,bi,bj - Loop counters | 
| 53 | 
       INTEGER i, j, bi, bj | 
       INTEGER i, j, bi, bj | 
| 54 | 
 C  hFacU, hFacV - determine the no-slip boundary condition | 
 C     hFacU, hFacV - determine the no-slip boundary condition | 
| 55 | 
       INTEGER k | 
       INTEGER k | 
| 56 | 
       _RS hFacU, hFacV, noSlipFac | 
       _RS hFacU, hFacV, noSlipFac | 
| 57 | 
  | 
 C     auxillary variables that help writing code that | 
| 58 | 
  | 
 C     vectorizes even after TAFization | 
| 59 | 
  | 
       _RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) | 
| 60 | 
  | 
       _RL dvdy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) | 
| 61 | 
  | 
       _RL dudy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) | 
| 62 | 
  | 
       _RL dvdx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) | 
| 63 | 
  | 
       _RL uave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) | 
| 64 | 
  | 
       _RL vave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) | 
| 65 | 
  | 
  | 
| 66 | 
       k = 1 | 
       k = 1 | 
| 67 | 
       noSlipFac = 0. _d 0 | 
       noSlipFac = 0. _d 0 | 
| 70 | 
 #ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION | 
 #ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION | 
| 71 | 
       DO bj=myByLo(myThid),myByHi(myThid) | 
       DO bj=myByLo(myThid),myByHi(myThid) | 
| 72 | 
        DO bi=myBxLo(myThid),myBxHi(myThid) | 
        DO bi=myBxLo(myThid),myBxHi(myThid) | 
| 73 | 
  | 
 C     abbreviations on C-points, need to do them in separate loops | 
| 74 | 
  | 
 C     for vectorization | 
| 75 | 
         DO j=1-Oly,sNy+Oly-1 | 
         DO j=1-Oly,sNy+Oly-1 | 
| 76 | 
          DO i=1-Olx,sNx+Olx-1 | 
          DO i=1-Olx,sNx+Olx-1 | 
| 77 | 
 C     evaluate strain rates | 
           dudx(I,J) = _recip_dxF(I,J,bi,bj) * | 
 | 
           e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * | 
  | 
| 78 | 
      &         (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) | 
      &         (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) | 
| 79 | 
      &         +HALF* | 
           uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) | 
| 80 | 
      &         (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) | 
          ENDDO | 
| 81 | 
      &         * k2AtC(I,J,bi,bj) | 
         ENDDO | 
| 82 | 
           e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * | 
         DO j=1-Oly,sNy+Oly-1 | 
| 83 | 
  | 
          DO i=1-Olx,sNx+Olx-1 | 
| 84 | 
  | 
           dvdy(I,J) = _recip_dyF(I,J,bi,bj) * | 
| 85 | 
      &         (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) | 
      &         (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) | 
| 86 | 
      &         +HALF* | 
           vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) | 
| 87 | 
      &         (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) | 
          ENDDO | 
| 88 | 
      &         * k1AtC(I,J,bi,bj) | 
         ENDDO | 
| 89 | 
  | 
 C     evaluate strain rates at C-points | 
| 90 | 
  | 
         DO j=1-Oly,sNy+Oly-1 | 
| 91 | 
  | 
          DO i=1-Olx,sNx+Olx-1 | 
| 92 | 
  | 
           e11Loc(I,J,bi,bj) = dudx(I,J) + vave(I,J) * k2AtC(I,J,bi,bj) | 
| 93 | 
  | 
           e22Loc(I,J,bi,bj) = dvdy(I,J) + uave(I,J) * k1AtC(I,J,bi,bj) | 
| 94 | 
          ENDDO | 
          ENDDO | 
| 95 | 
         ENDDO | 
         ENDDO | 
| 96 | 
  | 
 C     abbreviations at Z-points, need to do them in separate loops | 
| 97 | 
  | 
 C     for vectorization | 
| 98 | 
         DO j=1-Oly+1,sNy+Oly | 
         DO j=1-Oly+1,sNy+Oly | 
| 99 | 
          DO i=1-Olx+1,sNx+Olx | 
          DO i=1-Olx+1,sNx+Olx | 
| 100 | 
           hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) | 
           dudy(I,J) = ( uFld(I,J,bi,bj) - uFld(I  ,J-1,bi,bj) ) | 
 | 
           hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) | 
  | 
 | 
           e12Loc(I,J,bi,bj) = HALF*( | 
  | 
 | 
      &           ( uFld(I,J,bi,bj) - uFld(I  ,J-1,bi,bj) ) | 
  | 
| 101 | 
      &         * _recip_dyU(I,J,bi,bj) | 
      &         * _recip_dyU(I,J,bi,bj) | 
| 102 | 
      &         + ( vFld(I,J,bi,bj) - vFld(I-1,J  ,bi,bj) ) | 
           uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I  ,J-1,bi,bj)) | 
| 103 | 
  | 
          ENDDO | 
| 104 | 
  | 
         ENDDO | 
| 105 | 
  | 
         DO j=1-Oly+1,sNy+Oly | 
| 106 | 
  | 
          DO i=1-Olx+1,sNx+Olx | 
| 107 | 
  | 
           dvdx(I,J) = ( vFld(I,J,bi,bj) - vFld(I-1,J  ,bi,bj) ) | 
| 108 | 
      &         * _recip_dxV(I,J,bi,bj)  | 
      &         * _recip_dxV(I,J,bi,bj)  | 
| 109 | 
      &         - k1AtZ(I,J,bi,bj) | 
           vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J  ,bi,bj)) | 
| 110 | 
      &         * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J  ,bi,bj)) | 
          ENDDO | 
| 111 | 
      &         - k2AtZ(I,J,bi,bj) | 
         ENDDO | 
| 112 | 
      &         * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I  ,J-1,bi,bj)) | 
 C     evaluate strain rates at Z-points | 
| 113 | 
  | 
         DO j=1-Oly+1,sNy+Oly | 
| 114 | 
  | 
          DO i=1-Olx+1,sNx+Olx | 
| 115 | 
  | 
           hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) | 
| 116 | 
  | 
           hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) | 
| 117 | 
  | 
           e12Loc(I,J,bi,bj) = 0.5 _d 0 * ( | 
| 118 | 
  | 
      &         dudy(I,J) + dvdx(I,J) | 
| 119 | 
  | 
      &         - k1AtZ(I,J,bi,bj) * vave(I,J) | 
| 120 | 
  | 
      &         - k2AtZ(I,J,bi,bj) * uave(I,J) | 
| 121 | 
      &         ) | 
      &         ) | 
| 122 | 
      &         *maskC(I  ,J  ,k,bi,bj)*maskC(I-1,J  ,k,bi,bj) | 
      &         *maskC(I  ,J  ,k,bi,bj)*maskC(I-1,J  ,k,bi,bj) | 
| 123 | 
      &         *maskC(I  ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) | 
      &         *maskC(I  ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) | 
| 124 | 
      &         + 2.0 _d 0 * noSlipFac * ( | 
      &         + 2.0 _d 0 * noSlipFac * ( | 
| 125 | 
      &           ( uFld(I,J,bi,bj) + uFld(I  ,J-1,bi,bj) ) | 
      &           2.0 _d 0 * uave(I,J) * _recip_dyU(I,J,bi,bj) * hFacU | 
| 126 | 
      &         * _recip_dyU(I,J,bi,bj) * hFacU | 
      &         + 2.0 _d 0 * vave(I,J) * _recip_dxV(I,J,bi,bj) * hFacV | 
 | 
      &         + ( vFld(I,J,bi,bj) + vFld(I-1,J  ,bi,bj) ) | 
  | 
 | 
      &         * _recip_dxV(I,J,bi,bj) * hFacV | 
  | 
| 127 | 
      &         ) | 
      &         ) | 
| 128 | 
 C     no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 | 
 C     no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 | 
| 129 | 
 C     accross the boundary; this is already accomplished by masking so | 
 C     accross the boundary; this is already accomplished by masking so | 
| 130 | 
 C     that the following lines are not necessary | 
 C     that the following lines are not necessary | 
| 131 | 
 c$$$     &         - hFacV * k1AtZ(I,J,bi,bj) | 
 c$$$     &         - hFacV * k1AtZ(I,J,bi,bj) * vave(I,J) | 
| 132 | 
 c$$$     &         * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J  ,bi,bj)) | 
 c$$$     &         - hFacU * k2AtZ(I,J,bi,bj) * uave(I,J) | 
 | 
 c$$$     &         - hFacU * k2AtZ(I,J,bi,bj) | 
  | 
 | 
 c$$$     &         * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I  ,J-1,bi,bj)) | 
  | 
| 133 | 
          ENDDO | 
          ENDDO | 
| 134 | 
         ENDDO | 
         ENDDO | 
| 135 | 
  | 
  | 
 | 
 c$$$        ENDIF | 
  | 
| 136 | 
        ENDDO | 
        ENDDO | 
| 137 | 
       ENDDO | 
       ENDDO | 
| 138 | 
 #else  | 
 #else  |