| 51 |
C === Local variables === |
C === Local variables === |
| 52 |
C i,j,bi,bj - Loop counters |
C i,j,bi,bj - Loop counters |
| 53 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
| 54 |
C hFacU, hFacV - determine the no-slip boundary condition |
C hFacU, hFacV - determine the no-slip boundary condition |
| 55 |
INTEGER k |
INTEGER k |
| 56 |
_RS hFacU, hFacV, noSlipFac |
_RS hFacU, hFacV, noSlipFac |
| 57 |
|
C auxillary variables that help writing code that |
| 58 |
|
C vectorizes even after TAFization |
| 59 |
|
_RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 60 |
|
_RL dvdy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 61 |
|
_RL dudy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 62 |
|
_RL dvdx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 63 |
|
_RL uave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 64 |
|
_RL vave (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 65 |
|
|
| 66 |
k = 1 |
k = 1 |
| 67 |
noSlipFac = 0. _d 0 |
noSlipFac = 0. _d 0 |
| 70 |
#ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION |
#ifndef SEAICE_OLD_AND_BAD_DISCRETIZATION |
| 71 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
| 72 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 73 |
|
C abbreviations on C-points, need to do them in separate loops |
| 74 |
|
C for vectorization |
| 75 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-Oly,sNy+Oly-1 |
| 76 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-Olx,sNx+Olx-1 |
| 77 |
C evaluate strain rates |
dudx(I,J) = _recip_dxF(I,J,bi,bj) * |
|
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
|
| 78 |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
| 79 |
& +HALF* |
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) |
| 80 |
& (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
ENDDO |
| 81 |
& * k2AtC(I,J,bi,bj) |
ENDDO |
| 82 |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
DO j=1-Oly,sNy+Oly-1 |
| 83 |
|
DO i=1-Olx,sNx+Olx-1 |
| 84 |
|
dvdy(I,J) = _recip_dyF(I,J,bi,bj) * |
| 85 |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
| 86 |
& +HALF* |
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
| 87 |
& (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) |
ENDDO |
| 88 |
& * k1AtC(I,J,bi,bj) |
ENDDO |
| 89 |
|
C evaluate strain rates at C-points |
| 90 |
|
DO j=1-Oly,sNy+Oly-1 |
| 91 |
|
DO i=1-Olx,sNx+Olx-1 |
| 92 |
|
e11Loc(I,J,bi,bj) = dudx(I,J) + vave(I,J) * k2AtC(I,J,bi,bj) |
| 93 |
|
e22Loc(I,J,bi,bj) = dvdy(I,J) + uave(I,J) * k1AtC(I,J,bi,bj) |
| 94 |
ENDDO |
ENDDO |
| 95 |
ENDDO |
ENDDO |
| 96 |
|
C abbreviations at Z-points, need to do them in separate loops |
| 97 |
|
C for vectorization |
| 98 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-Oly+1,sNy+Oly |
| 99 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-Olx+1,sNx+Olx |
| 100 |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
dudy(I,J) = ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) |
|
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
|
|
e12Loc(I,J,bi,bj) = HALF*( |
|
|
& ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) |
|
| 101 |
& * _recip_dyU(I,J,bi,bj) |
& * _recip_dyU(I,J,bi,bj) |
| 102 |
& + ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) |
uave(I,J) = 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
| 103 |
|
ENDDO |
| 104 |
|
ENDDO |
| 105 |
|
DO j=1-Oly+1,sNy+Oly |
| 106 |
|
DO i=1-Olx+1,sNx+Olx |
| 107 |
|
dvdx(I,J) = ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) |
| 108 |
& * _recip_dxV(I,J,bi,bj) |
& * _recip_dxV(I,J,bi,bj) |
| 109 |
& - k1AtZ(I,J,bi,bj) |
vave(I,J) = 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
| 110 |
& * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
ENDDO |
| 111 |
& - k2AtZ(I,J,bi,bj) |
ENDDO |
| 112 |
& * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
C evaluate strain rates at Z-points |
| 113 |
|
DO j=1-Oly+1,sNy+Oly |
| 114 |
|
DO i=1-Olx+1,sNx+Olx |
| 115 |
|
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
| 116 |
|
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
| 117 |
|
e12Loc(I,J,bi,bj) = 0.5 _d 0 * ( |
| 118 |
|
& dudy(I,J) + dvdx(I,J) |
| 119 |
|
& - k1AtZ(I,J,bi,bj) * vave(I,J) |
| 120 |
|
& - k2AtZ(I,J,bi,bj) * uave(I,J) |
| 121 |
& ) |
& ) |
| 122 |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
| 123 |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
| 124 |
& + 2.0 _d 0 * noSlipFac * ( |
& + 2.0 _d 0 * noSlipFac * ( |
| 125 |
& ( uFld(I,J,bi,bj) + uFld(I ,J-1,bi,bj) ) |
& 2.0 _d 0 * uave(I,J) * _recip_dyU(I,J,bi,bj) * hFacU |
| 126 |
& * _recip_dyU(I,J,bi,bj) * hFacU |
& + 2.0 _d 0 * vave(I,J) * _recip_dxV(I,J,bi,bj) * hFacV |
|
& + ( vFld(I,J,bi,bj) + vFld(I-1,J ,bi,bj) ) |
|
|
& * _recip_dxV(I,J,bi,bj) * hFacV |
|
| 127 |
& ) |
& ) |
| 128 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
| 129 |
C accross the boundary; this is already accomplished by masking so |
C accross the boundary; this is already accomplished by masking so |
| 130 |
C that the following lines are not necessary |
C that the following lines are not necessary |
| 131 |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) * vave(I,J) |
| 132 |
c$$$ & * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) * uave(I,J) |
|
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) |
|
|
c$$$ & * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
|
| 133 |
ENDDO |
ENDDO |
| 134 |
ENDDO |
ENDDO |
| 135 |
|
|
|
c$$$ ENDIF |
|
| 136 |
ENDDO |
ENDDO |
| 137 |
ENDDO |
ENDDO |
| 138 |
#else |
#else |