| 7 |
SUBROUTINE SEAICE_CALC_STRAINRATES( |
SUBROUTINE SEAICE_CALC_STRAINRATES( |
| 8 |
I uFld, vFld, |
I uFld, vFld, |
| 9 |
O e11Loc, e22Loc, e12Loc, |
O e11Loc, e22Loc, e12Loc, |
| 10 |
I kSize, iStep, myTime, myIter, myThid ) |
I iStep, myTime, myIter, myThid ) |
| 11 |
C /==========================================================\ |
C /==========================================================\ |
| 12 |
C | SUBROUTINE SEAICE_CALC_STRAINRATES | |
C | SUBROUTINE SEAICE_CALC_STRAINRATES | |
| 13 |
C | o compute strain rates from ice velocities | |
C | o compute strain rates from ice velocities | |
| 33 |
C myTime :: Simulation time |
C myTime :: Simulation time |
| 34 |
C myIter :: Simulation timestep number |
C myIter :: Simulation timestep number |
| 35 |
C myThid :: My Thread Id. number |
C myThid :: My Thread Id. number |
|
C kSize :: length of 3rd dimension of velocity variables |
|
| 36 |
INTEGER iStep |
INTEGER iStep |
| 37 |
_RL myTime |
_RL myTime |
| 38 |
INTEGER myIter |
INTEGER myIter |
| 39 |
INTEGER myThid |
INTEGER myThid |
|
INTEGER kSize |
|
| 40 |
C ice velocities |
C ice velocities |
| 41 |
_RL uFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly,kSize,nSx,nSy) |
_RL uFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
| 42 |
_RL vFld(1-Olx:sNx+Olx,1-Oly:sNy+Oly,kSize,nSx,nSy) |
_RL vFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
| 43 |
C strain rate tensor |
C strain rate tensor |
| 44 |
_RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 45 |
_RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 66 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-Olx,sNx+Olx-1 |
| 67 |
C evaluate strain rates |
C evaluate strain rates |
| 68 |
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
| 69 |
& (uFld(I+1,J,1,bi,bj)-uFld(I,J,1,bi,bj)) |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
| 70 |
& +HALF* |
& +HALF* |
| 71 |
& (vFld(I,J,1,bi,bj)+vFld(I,J+1,1,bi,bj)) |
& (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
| 72 |
& * k2AtC(I,J,bi,bj) |
& * k2AtC(I,J,bi,bj) |
| 73 |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
| 74 |
& (vFld(I,J+1,1,bi,bj)-vFld(I,J,1,bi,bj)) |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
| 75 |
& +HALF* |
& +HALF* |
| 76 |
& (uFld(I,J,1,bi,bj)+uFld(I+1,J,1,bi,bj)) |
& (uFld(I,J,bi,bj)+uFld(I+1,J,bi,bj)) |
| 77 |
& * k1AtC(I,J,bi,bj) |
& * k1AtC(I,J,bi,bj) |
| 78 |
ENDDO |
ENDDO |
| 79 |
ENDDO |
ENDDO |
| 82 |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
| 83 |
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
| 84 |
e12Loc(I,J,bi,bj) = HALF*( |
e12Loc(I,J,bi,bj) = HALF*( |
| 85 |
& ( uFld(I,J,1,bi,bj) - uFld(I ,J-1,1,bi,bj) ) |
& ( uFld(I,J,bi,bj) - uFld(I ,J-1,bi,bj) ) |
| 86 |
& * _recip_dyU(I,J,bi,bj) |
& * _recip_dyU(I,J,bi,bj) |
| 87 |
& + ( vFld(I,J,1,bi,bj) - vFld(I-1,J ,1,bi,bj) ) |
& + ( vFld(I,J,bi,bj) - vFld(I-1,J ,bi,bj) ) |
| 88 |
& * _recip_dxV(I,J,bi,bj) |
& * _recip_dxV(I,J,bi,bj) |
| 89 |
& - k1AtZ(I,J,bi,bj) |
& - k1AtZ(I,J,bi,bj) |
| 90 |
& * 0.5 _d 0 * (vFld(I,J,1,bi,bj)+vFld(I-1,J ,1,bi,bj)) |
& * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
| 91 |
& - k2AtZ(I,J,bi,bj) |
& - k2AtZ(I,J,bi,bj) |
| 92 |
& * 0.5 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
& * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
| 93 |
& ) |
& ) |
| 94 |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
& *maskC(I ,J ,k,bi,bj)*maskC(I-1,J ,k,bi,bj) |
| 95 |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
& *maskC(I ,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
| 96 |
& + 2.0 _d 0 * noSlipFac * ( |
& + 2.0 _d 0 * noSlipFac * ( |
| 97 |
& ( uFld(I,J,1,bi,bj) + uFld(I ,J-1,1,bi,bj) ) |
& ( uFld(I,J,bi,bj) + uFld(I ,J-1,bi,bj) ) |
| 98 |
& * _recip_dyU(I,J,bi,bj) * hFacU |
& * _recip_dyU(I,J,bi,bj) * hFacU |
| 99 |
& + ( vFld(I,J,1,bi,bj) + vFld(I-1,J ,1,bi,bj) ) |
& + ( vFld(I,J,bi,bj) + vFld(I-1,J ,bi,bj) ) |
| 100 |
& * _recip_dxV(I,J,bi,bj) * hFacV |
& * _recip_dxV(I,J,bi,bj) * hFacV |
| 101 |
& ) |
& ) |
| 102 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
C no slip at the boundary implies u(j)+u(j-1)=0 and v(i)+v(i-1)=0 |
| 103 |
C accross the boundary; this is already accomplished by masking so |
C accross the boundary; this is already accomplished by masking so |
| 104 |
C that the following lines are not necessary |
C that the following lines are not necessary |
| 105 |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) |
c$$$ & - hFacV * k1AtZ(I,J,bi,bj) |
| 106 |
c$$$ & * 0.5 _d 0 * (vFld(I,J,1,bi,bj)+vFld(I-1,J ,1,bi,bj)) |
c$$$ & * 0.5 _d 0 * (vFld(I,J,bi,bj)+vFld(I-1,J ,bi,bj)) |
| 107 |
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) |
c$$$ & - hFacU * k2AtZ(I,J,bi,bj) |
| 108 |
c$$$ & * 0.5 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
c$$$ & * 0.5 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
| 109 |
ENDDO |
ENDDO |
| 110 |
ENDDO |
ENDDO |
| 111 |
|
|
| 121 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-Olx,sNx+Olx-1 |
| 122 |
C evaluate strain rates |
C evaluate strain rates |
| 123 |
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
e11Loc(I,J,bi,bj) = _recip_dxF(I,J,bi,bj) * |
| 124 |
& (uFld(I+1,J,1,bi,bj)-uFld(I,J,1,bi,bj)) |
& (uFld(I+1,J,bi,bj)-uFld(I,J,bi,bj)) |
| 125 |
& -HALF* |
& -HALF* |
| 126 |
& (vFld(I,J,1,bi,bj)+vFld(I,J+1,1,bi,bj)) |
& (vFld(I,J,bi,bj)+vFld(I,J+1,bi,bj)) |
| 127 |
& * _tanPhiAtU(I,J,bi,bj)*recip_rSphere |
& * _tanPhiAtU(I,J,bi,bj)*recip_rSphere |
| 128 |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
e22Loc(I,J,bi,bj) = _recip_dyF(I,J,bi,bj) * |
| 129 |
& (vFld(I,J+1,1,bi,bj)-vFld(I,J,1,bi,bj)) |
& (vFld(I,J+1,bi,bj)-vFld(I,J,bi,bj)) |
| 130 |
C one metric term is missing |
C one metric term is missing |
| 131 |
ENDDO |
ENDDO |
| 132 |
ENDDO |
ENDDO |
| 133 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-Oly+1,sNy+Oly |
| 134 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-Olx+1,sNx+Olx |
| 135 |
e12Loc(I,J,bi,bj) = HALF*( |
e12Loc(I,J,bi,bj) = HALF*( |
| 136 |
& (uFld(I ,J ,1,bi,bj) * _dxC(I ,J ,bi,bj) |
& (uFld(I ,J ,bi,bj) * _dxC(I ,J ,bi,bj) |
| 137 |
& -uFld(I ,J-1,1,bi,bj) * _dxC(I ,J-1,bi,bj) |
& -uFld(I ,J-1,bi,bj) * _dxC(I ,J-1,bi,bj) |
| 138 |
& +vFld(I ,J ,1,bi,bj) * _dyC(I ,J ,bi,bj) |
& +vFld(I ,J ,bi,bj) * _dyC(I ,J ,bi,bj) |
| 139 |
& -vFld(I-1,J ,1,bi,bj) * _dyC(I-1,J ,bi,bj)) |
& -vFld(I-1,J ,bi,bj) * _dyC(I-1,J ,bi,bj)) |
| 140 |
& * recip_rAz(I,J,bi,bj) |
& * recip_rAz(I,J,bi,bj) |
| 141 |
& + |
& + |
| 142 |
& 0.25 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
& 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
| 143 |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
| 144 |
& *recip_rSphere |
& *recip_rSphere |
| 145 |
& ) |
& ) |
| 157 |
|
|
| 158 |
e12Loc(I,J,bi,bj) = e12Loc(I,J,bi,bj) |
e12Loc(I,J,bi,bj) = e12Loc(I,J,bi,bj) |
| 159 |
& + recip_rAz(i,j,bi,bj) * 2. _d 0 * |
& + recip_rAz(i,j,bi,bj) * 2. _d 0 * |
| 160 |
& ( hFacU * ( _dxC(i,j-1,bi,bj)*uFld(i,j ,1,bi,bj) |
& ( hFacU * ( _dxC(i,j-1,bi,bj)*uFld(i,j ,bi,bj) |
| 161 |
& + _dxC(i,j, bi,bj)*uFld(i,j-1,1,bi,bj) ) |
& + _dxC(i,j, bi,bj)*uFld(i,j-1,bi,bj) ) |
| 162 |
& + hFacV * ( _dyC(i-1,j,bi,bj)*vFld(i ,j,1,bi,bj) |
& + hFacV * ( _dyC(i-1,j,bi,bj)*vFld(i ,j,bi,bj) |
| 163 |
& + _dyC(i, j,bi,bj)*vFld(i-1,j,1,bi,bj) ) ) |
& + _dyC(i, j,bi,bj)*vFld(i-1,j,bi,bj) ) ) |
| 164 |
& - hFacU |
& - hFacU |
| 165 |
& * 0.25 _d 0 * (uFld(I,J,1,bi,bj)+uFld(I ,J-1,1,bi,bj)) |
& * 0.25 _d 0 * (uFld(I,J,bi,bj)+uFld(I ,J-1,bi,bj)) |
| 166 |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
& * ( _tanPhiAtU(I,J,bi,bj) + _tanPhiAtU(I,J-1,bi,bj) ) |
| 167 |
& *recip_rSphere |
& *recip_rSphere |
| 168 |
C one metric term is missing |
C one metric term is missing |