7 |
#else |
#else |
8 |
# define OBCS_UVICE_OLD |
# define OBCS_UVICE_OLD |
9 |
#endif |
#endif |
10 |
|
#ifdef ALLOW_AUTODIFF |
11 |
|
# include "AUTODIFF_OPTIONS.h" |
12 |
|
#endif |
13 |
|
|
14 |
CBOP |
CBOP |
15 |
C !ROUTINE: SEAICE_CALC_STRAINRATES |
C !ROUTINE: SEAICE_CALC_STRAINRATES |
36 |
#include "EEPARAMS.h" |
#include "EEPARAMS.h" |
37 |
#include "PARAMS.h" |
#include "PARAMS.h" |
38 |
#include "GRID.h" |
#include "GRID.h" |
39 |
|
#include "SEAICE_SIZE.h" |
40 |
#include "SEAICE_PARAMS.h" |
#include "SEAICE_PARAMS.h" |
41 |
#include "SEAICE.h" |
#include "SEAICE.h" |
42 |
|
|
55 |
C myTime :: Simulation time |
C myTime :: Simulation time |
56 |
C myIter :: Simulation timestep number |
C myIter :: Simulation timestep number |
57 |
C myThid :: My Thread Id. number |
C myThid :: My Thread Id. number |
58 |
_RL uFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
_RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
59 |
_RL vFld (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
_RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
60 |
_RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e11Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
61 |
_RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e22Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
62 |
_RL e12Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
_RL e12Loc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
75 |
C hFacU, hFacV :: determine the no-slip boundary condition |
C hFacU, hFacV :: determine the no-slip boundary condition |
76 |
INTEGER k |
INTEGER k |
77 |
_RS hFacU, hFacV, noSlipFac |
_RS hFacU, hFacV, noSlipFac |
78 |
|
_RL third |
79 |
|
PARAMETER ( third = 0.333333333333333333333333333 _d 0 ) |
80 |
C auxillary variables that help writing code that |
C auxillary variables that help writing code that |
81 |
C vectorizes even after TAFization |
C vectorizes even after TAFization |
82 |
_RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL dudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
89 |
k = 1 |
k = 1 |
90 |
noSlipFac = 0. _d 0 |
noSlipFac = 0. _d 0 |
91 |
IF ( SEAICE_no_slip ) noSlipFac = 1. _d 0 |
IF ( SEAICE_no_slip ) noSlipFac = 1. _d 0 |
92 |
|
C in order repoduce results before fixing a bug in r1.20 comment out |
93 |
|
C the following line |
94 |
|
CML IF ( SEAICE_no_slip ) noSlipFac = 2. _d 0 |
95 |
C |
C |
96 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
97 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
98 |
C abbreviations on C-points, need to do them in separate loops |
C abbreviations on C-points, need to do them in separate loops |
99 |
C for vectorization |
C for vectorization |
100 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-OLy,sNy+OLy-1 |
101 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-OLx,sNx+OLx-1 |
102 |
dudx(i,j) = _recip_dxF(i,j,bi,bj) * |
dudx(i,j) = _recip_dxF(i,j,bi,bj) * |
103 |
& (uFld(i+1,j,bi,bj)-uFld(i,j,bi,bj)) |
& (uFld(i+1,j,bi,bj)-uFld(i,j,bi,bj)) |
104 |
uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i+1,j,bi,bj)) |
uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i+1,j,bi,bj)) |
105 |
ENDDO |
ENDDO |
106 |
ENDDO |
ENDDO |
107 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-OLy,sNy+OLy-1 |
108 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-OLx,sNx+OLx-1 |
109 |
dvdy(i,j) = _recip_dyF(i,j,bi,bj) * |
dvdy(i,j) = _recip_dyF(i,j,bi,bj) * |
110 |
& (vFld(i,j+1,bi,bj)-vFld(i,j,bi,bj)) |
& (vFld(i,j+1,bi,bj)-vFld(i,j,bi,bj)) |
111 |
vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i,j+1,bi,bj)) |
vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i,j+1,bi,bj)) |
112 |
ENDDO |
ENDDO |
113 |
ENDDO |
ENDDO |
114 |
C evaluate strain rates at C-points |
C evaluate strain rates at C-points |
115 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-OLy,sNy+OLy-1 |
116 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-OLx,sNx+OLx-1 |
117 |
e11Loc(i,j,bi,bj) = dudx(i,j) + vave(i,j) * k2AtC(i,j,bi,bj) |
e11Loc(i,j,bi,bj) = dudx(i,j) + vave(i,j) * k2AtC(i,j,bi,bj) |
118 |
e22Loc(i,j,bi,bj) = dvdy(i,j) + uave(i,j) * k1AtC(i,j,bi,bj) |
e22Loc(i,j,bi,bj) = dvdy(i,j) + uave(i,j) * k1AtC(i,j,bi,bj) |
119 |
ENDDO |
ENDDO |
120 |
ENDDO |
ENDDO |
121 |
#ifndef OBCS_UVICE_OLD |
#ifndef OBCS_UVICE_OLD |
122 |
C-- for OBCS: assume no gradient beyong OB |
C-- for OBCS: assume no gradient beyong OB |
123 |
DO j=1-Oly,sNy+Oly-1 |
DO j=1-OLy,sNy+OLy-1 |
124 |
DO i=1-Olx,sNx+Olx-1 |
DO i=1-OLx,sNx+OLx-1 |
125 |
e11Loc(i,j,bi,bj) = e11Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) |
e11Loc(i,j,bi,bj) = e11Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) |
126 |
e22Loc(i,j,bi,bj) = e22Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) |
e22Loc(i,j,bi,bj) = e22Loc(i,j,bi,bj)*maskInC(i,j,bi,bj) |
127 |
ENDDO |
ENDDO |
130 |
|
|
131 |
C abbreviations at Z-points, need to do them in separate loops |
C abbreviations at Z-points, need to do them in separate loops |
132 |
C for vectorization |
C for vectorization |
133 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-OLy+1,sNy+OLy |
134 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-OLx+1,sNx+OLx |
135 |
dudy(i,j) = ( uFld(i,j,bi,bj) - uFld(i ,j-1,bi,bj) ) |
dudy(i,j) = ( uFld(i,j,bi,bj) - uFld(i ,j-1,bi,bj) ) |
136 |
& * _recip_dyU(i,j,bi,bj) |
& * _recip_dyU(i,j,bi,bj) |
137 |
uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i ,j-1,bi,bj)) |
uave(i,j) = 0.5 _d 0 * (uFld(i,j,bi,bj)+uFld(i ,j-1,bi,bj)) |
138 |
ENDDO |
ENDDO |
139 |
ENDDO |
ENDDO |
140 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-OLy+1,sNy+OLy |
141 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-OLx+1,sNx+OLx |
142 |
dvdx(i,j) = ( vFld(i,j,bi,bj) - vFld(i-1,j ,bi,bj) ) |
dvdx(i,j) = ( vFld(i,j,bi,bj) - vFld(i-1,j ,bi,bj) ) |
143 |
& * _recip_dxV(i,j,bi,bj) |
& * _recip_dxV(i,j,bi,bj) |
144 |
vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i-1,j ,bi,bj)) |
vave(i,j) = 0.5 _d 0 * (vFld(i,j,bi,bj)+vFld(i-1,j ,bi,bj)) |
145 |
ENDDO |
ENDDO |
146 |
ENDDO |
ENDDO |
147 |
C evaluate strain rates at Z-points |
C evaluate strain rates at Z-points |
148 |
DO j=1-Oly+1,sNy+Oly |
DO j=1-OLy+1,sNy+OLy |
149 |
DO i=1-Olx+1,sNx+Olx |
DO i=1-OLx+1,sNx+OLx |
150 |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
hFacU = _maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj) |
151 |
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
hFacV = _maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj) |
152 |
e12Loc(i,j,bi,bj) = 0.5 _d 0 * ( |
e12Loc(i,j,bi,bj) = 0.5 _d 0 * ( |
156 |
& ) |
& ) |
157 |
& *maskC(i ,j ,k,bi,bj)*maskC(i-1,j ,k,bi,bj) |
& *maskC(i ,j ,k,bi,bj)*maskC(i-1,j ,k,bi,bj) |
158 |
& *maskC(i ,j-1,k,bi,bj)*maskC(i-1,j-1,k,bi,bj) |
& *maskC(i ,j-1,k,bi,bj)*maskC(i-1,j-1,k,bi,bj) |
159 |
& + 2.0 _d 0 * noSlipFac * ( |
& + noSlipFac * ( |
160 |
& 2.0 _d 0 * uave(i,j) * _recip_dyU(i,j,bi,bj) * hFacU |
& 2.0 _d 0 * uave(i,j) * _recip_dyU(i,j,bi,bj) * hFacU |
161 |
& + 2.0 _d 0 * vave(i,j) * _recip_dxV(i,j,bi,bj) * hFacV |
& + 2.0 _d 0 * vave(i,j) * _recip_dxV(i,j,bi,bj) * hFacV |
162 |
& ) |
& ) |
167 |
c$$$ & - hFacU * k2AtZ(i,j,bi,bj) * uave(i,j) |
c$$$ & - hFacU * k2AtZ(i,j,bi,bj) * uave(i,j) |
168 |
ENDDO |
ENDDO |
169 |
ENDDO |
ENDDO |
170 |
|
IF ( SEAICE_no_slip .AND. SEAICE_2ndOrderBC ) THEN |
171 |
|
DO j=1-OLy+2,sNy+OLy-1 |
172 |
|
DO i=1-OLx+2,sNx+OLx-1 |
173 |
|
hFacU = (_maskW(i,j,k,bi,bj) - _maskW(i,j-1,k,bi,bj))*third |
174 |
|
hFacV = (_maskS(i,j,k,bi,bj) - _maskS(i-1,j,k,bi,bj))*third |
175 |
|
hFacU = hFacU*( _maskW(i,j-2,k,bi,bj)*_maskW(i,j-1,k,bi,bj) |
176 |
|
& + _maskW(i,j+1,k,bi,bj)*_maskW(i,j, k,bi,bj) ) |
177 |
|
hFacV = hFacV*( _maskS(i-2,j,k,bi,bj)*_maskS(i-1,j,k,bi,bj) |
178 |
|
& + _maskS(i+1,j,k,bi,bj)*_maskS(i ,j,k,bi,bj) ) |
179 |
|
C right hand sided dv/dx = (9*v(i,j)-v(i+1,j))/(4*dxv(i,j)-dxv(i+1,j)) |
180 |
|
C according to a Taylor expansion to 2nd order. We assume that dxv |
181 |
|
C varies very slowly, so that the denominator simplifies to 3*dxv(i,j), |
182 |
|
C then dv/dx = (6*v(i,j)+3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) |
183 |
|
C = 2*v(i,j)/dxv(i,j) + (3*v(i,j)-v(i+1,j))/(3*dxv(i,j)) |
184 |
|
C the left hand sided dv/dx is analogously |
185 |
|
C = - 2*v(i-1,j)/dxv(i,j) - (3*v(i-1,j)-v(i-2,j))/(3*dxv(i,j)) |
186 |
|
C the first term is the first order part, which is already added. |
187 |
|
C For e12 we only need 0.5 of this gradient and vave = is either |
188 |
|
C 0.5*v(i,j) or 0.5*v(i-1,j) near the boundary so that we need an |
189 |
|
C extra factor of 2. This explains the six. du/dy is analogous. |
190 |
|
C The masking is ugly, but hopefully effective. |
191 |
|
e12Loc(i,j,bi,bj) = e12Loc(i,j,bi,bj) + 0.5 _d 0 * ( |
192 |
|
& _recip_dyU(i,j,bi,bj) * ( 6.0 _d 0 * uave(i,j) |
193 |
|
& - uFld(i,j-2,bi,bj)*_maskW(i,j-1,k,bi,bj) |
194 |
|
& - uFld(i,j+1,bi,bj)*_maskW(i,j ,k,bi,bj) ) * hFacU |
195 |
|
& + _recip_dxV(i,j,bi,bj) * ( 6.0 _d 0 * vave(i,j) |
196 |
|
& - vFld(i-2,j,bi,bj)*_maskS(i-1,j,k,bi,bj) |
197 |
|
& - vFld(i+1,j,bi,bj)*_maskS(i ,j,k,bi,bj) ) * hFacV |
198 |
|
& ) |
199 |
|
ENDDO |
200 |
|
ENDDO |
201 |
|
ENDIF |
202 |
ENDDO |
ENDDO |
203 |
ENDDO |
ENDDO |
204 |
|
|