/[MITgcm]/MITgcm/pkg/obcs/orlanski_north.F
ViewVC logotype

Annotation of /MITgcm/pkg/obcs/orlanski_north.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download)
Thu Oct 1 21:04:50 2009 UTC (14 years, 8 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint62v, checkpoint62u, checkpoint62t, checkpoint62c, checkpoint62s, checkpoint62r, checkpoint62q, checkpoint62p, checkpoint62a, checkpoint62g, checkpoint62f, checkpoint62e, checkpoint62d, checkpoint62k, checkpoint62j, checkpoint62i, checkpoint62h, checkpoint62o, checkpoint62n, checkpoint62m, checkpoint62l, checkpoint62w, checkpoint62x, checkpoint62, checkpoint62b, checkpoint61w, checkpoint61z, checkpoint61x, checkpoint61y
Changes since 1.6: +28 -24 lines
go through NH code only if nonHydrostatic=T

1 jmc 1.7 C $Header: /u/gcmpack/MITgcm/pkg/obcs/orlanski_north.F,v 1.6 2009/09/17 16:30:07 jmc Exp $
2 adcroft 1.3 C $Name: $
3 adcroft 1.2
4     #include "OBCS_OPTIONS.h"
5    
6 jmc 1.6 SUBROUTINE ORLANSKI_NORTH( bi, bj, futureTime,
7     I uVel, vVel, wVel, theta, salt,
8 adcroft 1.2 I myThid )
9     C /==========================================================\
10     C | SUBROUTINE OBCS_RADIATE |
11     C | o Calculate future boundary data at open boundaries |
12     C | at time = futureTime by applying Orlanski radiation |
13     C | conditions. |
14     C |==========================================================|
15     C | |
16     C \==========================================================/
17     IMPLICIT NONE
18    
19     C === Global variables ===
20     #include "SIZE.h"
21     #include "EEPARAMS.h"
22     #include "PARAMS.h"
23     #include "GRID.h"
24     #include "OBCS.h"
25     #include "ORLANSKI.h"
26    
27 jmc 1.6 C SPK 6/2/00: Added radiative OBCs for salinity.
28     C SPK 6/6/00: Changed calculation of OB*w. When K=1, the
29 adcroft 1.2 C upstream value is used. For example on the eastern OB:
30     C IF (K.EQ.1) THEN
31     C OBEw(J,K,bi,bj)=wVel(I_obc-1,J,K,bi,bj)
32     C ENDIF
33 jmc 1.6 C
34 adcroft 1.2 C SPK 7/7/00: 1) Removed OB*w fix (see above).
35     C 2) Added variable CMAX. Maximum diagnosed phase speed is now
36 jmc 1.6 C clamped to CMAX. For stability of AB-II scheme (CFL) the
37 adcroft 1.2 C (non-dimensional) phase speed must be <0.5
38     C 3) (Sonya Legg) Changed application of uVel and vVel.
39 jmc 1.6 C uVel on the western OB is actually applied at I_obc+1
40 adcroft 1.2 C while vVel on the southern OB is applied at J_obc+1.
41 adcroft 1.3 C 4) (Sonya Legg) Added templates for forced OBs.
42 adcroft 1.2 C
43     C SPK 7/17/00: Non-uniform resolution is now taken into account in diagnosing
44     C phase speeds and time-stepping OB values. CL is still the
45     C non-dimensional phase speed; CVEL is the dimensional phase
46 jmc 1.6 C speed: CVEL = CL*(dx or dy)/dt, where dx and dy is the
47     C appropriate grid spacings. Note that CMAX (with which CL
48 adcroft 1.2 C is compared) remains non-dimensional.
49 jmc 1.6 C
50     C SPK 7/18/00: Added code to allow filtering of phase speed following
51     C Blumberg and Kantha. There is now a separate array
52 adcroft 1.2 C CVEL_**, where **=Variable(U,V,T,S,W)Boundary(E,W,N,S) for
53 jmc 1.6 C the dimensional phase speed. These arrays are initialized to
54 adcroft 1.2 C zero in ini_obcs.F. CVEL_** is filtered according to
55     C CVEL_** = fracCVEL*CVEL(new) + (1-fracCVEL)*CVEL_**(old).
56     C fracCVEL=1.0 turns off filtering.
57     C
58 jmc 1.6 C SPK 7/26/00: Changed code to average phase speed. A new variable
59 adcroft 1.2 C 'cvelTimeScale' was created. This variable must now be
60 jmc 1.6 C specified. Then, fracCVEL=deltaT/cvelTimeScale.
61     C Since the goal is to smooth out the 'singularities' in the
62     C diagnosed phase speed, cvelTimeScale could be picked as the
63     C duration of the singular period in the unfiltered case. Thus,
64     C for a plane wave cvelTimeScale might be the time take for the
65 adcroft 1.2 C wave to travel a distance DX, where DX is the width of the region
66     C near which d(phi)/dx is small.
67    
68     C == Routine arguments ==
69     INTEGER bi, bj
70     _RL futureTime
71     _RL uVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
72     _RL vVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
73     _RL wVel (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
74     _RL theta(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
75     _RL salt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy)
76     INTEGER myThid
77    
78     #ifdef ALLOW_ORLANSKI
79 heimbach 1.5 #ifdef ALLOW_OBCS_NORTH
80 adcroft 1.2
81     C == Local variables ==
82     INTEGER I, K, J_obc
83     _RL CL, ab1, ab2, fracCVEL, f1, f2
84    
85     ab1 = 1.5 _d 0 + abEps /* Adams-Bashforth coefficients */
86     ab2 = -0.5 _d 0 - abEps
87     /* CMAX is maximum allowable phase speed-CFL for AB-II */
88     /* cvelTimeScale is averaging period for phase speed in sec. */
89    
90     fracCVEL = deltaT/cvelTimeScale /* fraction of new phase speed used*/
91 adcroft 1.3 f1 = fracCVEL /* dont change this. Set cvelTimeScale */
92     f2 = 1.0-fracCVEL /* dont change this. set cvelTimeScale */
93 adcroft 1.2
94     C Northern OB (Orlanski Radiation Condition)
95     DO K=1,Nr
96     DO I=1-Olx,sNx+Olx
97     J_obc=OB_Jn(I,bi,bj)
98     IF (J_obc.ne.0) THEN
99     C uVel
100     IF ((UN_STORE_2(I,K,bi,bj).eq.0.).and.
101     & (UN_STORE_3(I,K,bi,bj).eq.0.)) THEN
102     CL=0.
103     ELSE
104     CL=-(uVel(I,J_obc-1,K,bi,bj)-UN_STORE_1(I,K,bi,bj))/
105     & (ab1*UN_STORE_2(I,K,bi,bj) + ab2*UN_STORE_3(I,K,bi,bj))
106     ENDIF
107     IF (CL.lt.0.) THEN
108     CL=0.
109     ELSEIF (CL.gt.CMAX) THEN
110     CL=CMAX
111     ENDIF
112     CVEL_UN(I,K,bi,bj) = f1*(CL*dyU(I,J_obc-1,bi,bj)/deltaT)+
113     & f2*CVEL_UN(I,K,bi,bj)
114     C update OBC to next timestep
115     OBNu(I,K,bi,bj)=uVel(I,J_obc,K,bi,bj)-
116 jmc 1.4 & CVEL_UN(I,K,bi,bj)*deltaT*recip_dyU(I,J_obc,bi,bj)*
117 adcroft 1.2 & (ab1*(uVel(I,J_obc,K,bi,bj)-uVel(I,J_obc-1,K,bi,bj)) +
118     & ab2*(UN_STORE_4(I,K,bi,bj)-UN_STORE_1(I,K,bi,bj)))
119     C vVel
120     IF ((VN_STORE_2(I,K,bi,bj).eq.0.).and.
121     & (VN_STORE_3(I,K,bi,bj).eq.0.)) THEN
122     CL=0.
123     ELSE
124     CL=-(vVel(I,J_obc-1,K,bi,bj)-VN_STORE_1(I,K,bi,bj))/
125     & (ab1*VN_STORE_2(I,K,bi,bj) + ab2*VN_STORE_3(I,K,bi,bj))
126 jmc 1.6 ENDIF
127 adcroft 1.2 IF (CL.lt.0.) THEN
128     CL=0.
129     ELSEIF (CL.gt.CMAX) THEN
130     CL=CMAX
131     ENDIF
132     CVEL_VN(I,K,bi,bj) = f1*(CL*dyF(I,J_obc-2,bi,bj)/deltaT)+
133     & f2*CVEL_VN(I,K,bi,bj)
134     C update OBC to next timestep
135     OBNv(I,K,bi,bj)=vVel(I,J_obc,K,bi,bj)-
136 jmc 1.4 & CVEL_VN(I,K,bi,bj)*deltaT*recip_dyF(I,J_obc-1,bi,bj)*
137 adcroft 1.2 & (ab1*(vVel(I,J_obc,K,bi,bj)-vVel(I,J_obc-1,K,bi,bj)) +
138 jmc 1.6 & ab2*(VN_STORE_4(I,K,bi,bj)-VN_STORE_1(I,K,bi,bj)))
139 adcroft 1.2 C Temperature
140     IF ((TN_STORE_2(I,K,bi,bj).eq.0.).and.
141     & (TN_STORE_3(I,K,bi,bj).eq.0.)) THEN
142     CL=0.
143     ELSE
144     CL=-(theta(I,J_obc-1,K,bi,bj)-TN_STORE_1(I,K,bi,bj))/
145     & (ab1*TN_STORE_2(I,K,bi,bj) + ab2*TN_STORE_3(I,K,bi,bj))
146 jmc 1.6 ENDIF
147 adcroft 1.2 IF (CL.lt.0.) THEN
148     CL=0.
149     ELSEIF (CL.gt.CMAX) THEN
150     CL=CMAX
151     ENDIF
152     CVEL_TN(I,K,bi,bj) = f1*(CL*dyC(I,J_obc-1,bi,bj)/deltaT)+
153     & f2*CVEL_TN(I,K,bi,bj)
154     C update OBC to next timestep
155     OBNt(I,K,bi,bj)=theta(I,J_obc,K,bi,bj)-
156 jmc 1.4 & CVEL_TN(I,K,bi,bj)*deltaT*recip_dyC(I,J_obc,bi,bj)*
157 adcroft 1.2 & (ab1*(theta(I,J_obc,K,bi,bj)-theta(I,J_obc-1,K,bi,bj))+
158 jmc 1.6 & ab2*(TN_STORE_4(I,K,bi,bj)-TN_STORE_1(I,K,bi,bj)))
159 adcroft 1.2 C Salinity
160     IF ((SN_STORE_2(I,K,bi,bj).eq.0.).and.
161     & (SN_STORE_3(I,K,bi,bj).eq.0.)) THEN
162     CL=0.
163     ELSE
164     CL=-(salt(I,J_obc-1,K,bi,bj)-SN_STORE_1(I,K,bi,bj))/
165     & (ab1*SN_STORE_2(I,K,bi,bj) + ab2*SN_STORE_3(I,K,bi,bj))
166 jmc 1.6 ENDIF
167 adcroft 1.2 IF (CL.lt.0.) THEN
168     CL=0.
169     ELSEIF (CL.gt.CMAX) THEN
170     CL=CMAX
171     ENDIF
172     CVEL_SN(I,K,bi,bj) = f1*(CL*dyC(I,J_obc-1,bi,bj)/deltaT)+
173     & f2*CVEL_SN(I,K,bi,bj)
174     C update OBC to next timestep
175     OBNs(I,K,bi,bj)=salt(I,J_obc,K,bi,bj)-
176 jmc 1.4 & CVEL_SN(I,K,bi,bj)*deltaT*recip_dyC(I,J_obc,bi,bj)*
177 jmc 1.6 & (ab1*(salt(I,J_obc,K,bi,bj)-salt(I,J_obc-1,K,bi,bj)) +
178 adcroft 1.2 & ab2*(SN_STORE_4(I,K,bi,bj)-SN_STORE_1(I,K,bi,bj)))
179 jmc 1.7 #ifdef ALLOW_NONHYDROSTATIC
180     IF ( nonHydrostatic ) THEN
181 adcroft 1.2 C wVel
182 jmc 1.7 IF ((WN_STORE_2(I,K,bi,bj).eq.0.).and.
183     & (WN_STORE_3(I,K,bi,bj).eq.0.)) THEN
184     CL=0.
185     ELSE
186     CL=-(wVel(I,J_obc-1,K,bi,bj)-WN_STORE_1(I,K,bi,bj))/
187     & (ab1*WN_STORE_2(I,K,bi,bj)+ab2*WN_STORE_3(I,K,bi,bj))
188     ENDIF
189     IF (CL.lt.0.) THEN
190     CL=0.
191     ELSEIF (CL.gt.CMAX) THEN
192     CL=CMAX
193     ENDIF
194     CVEL_WN(I,K,bi,bj)=f1*(CL*dyC(I,J_obc-1,bi,bj)/deltaT)
195     & + f2*CVEL_WN(I,K,bi,bj)
196     C update OBC to next timestep
197     OBNw(I,K,bi,bj)=wVel(I,J_obc,K,bi,bj)-
198     & CVEL_WN(I,K,bi,bj)*deltaT*recip_dyC(I,J_obc,bi,bj)*
199     & (ab1*(wVel(I,J_obc,K,bi,bj)-wVel(I,J_obc-1,K,bi,bj))+
200     & ab2*(WN_STORE_4(I,K,bi,bj)-WN_STORE_1(I,K,bi,bj)))
201     ENDIF
202     #endif /* ALLOW_NONHYDROSTATIC */
203 adcroft 1.2 C update/save storage arrays
204     C uVel
205     C copy t-1 to t-2 array
206     UN_STORE_3(I,K,bi,bj)=UN_STORE_2(I,K,bi,bj)
207     C copy (current time) t to t-1 arrays
208     UN_STORE_2(I,K,bi,bj)=uVel(I,J_obc-1,K,bi,bj) -
209     & uVel(I,J_obc-2,K,bi,bj)
210     UN_STORE_1(I,K,bi,bj)=uVel(I,J_obc-1,K,bi,bj)
211     UN_STORE_4(I,K,bi,bj)=uVel(I,J_obc,K,bi,bj)
212     C vVel
213     C copy t-1 to t-2 array
214     VN_STORE_3(I,K,bi,bj)=VN_STORE_2(I,K,bi,bj)
215     C copy (current time) t to t-1 arrays
216     VN_STORE_2(I,K,bi,bj)=vVel(I,J_obc-1,K,bi,bj) -
217     & vVel(I,J_obc-2,K,bi,bj)
218     VN_STORE_1(I,K,bi,bj)=vVel(I,J_obc-1,K,bi,bj)
219     VN_STORE_4(I,K,bi,bj)=vVel(I,J_obc,K,bi,bj)
220     C Temperature
221     C copy t-1 to t-2 array
222     TN_STORE_3(I,K,bi,bj)=TN_STORE_2(I,K,bi,bj)
223     C copy (current time) t to t-1 arrays
224     TN_STORE_2(I,K,bi,bj)=theta(I,J_obc-1,K,bi,bj) -
225     & theta(I,J_obc-2,K,bi,bj)
226     TN_STORE_1(I,K,bi,bj)=theta(I,J_obc-1,K,bi,bj)
227     TN_STORE_4(I,K,bi,bj)=theta(I,J_obc,K,bi,bj)
228     C Salinity
229     C copy t-1 to t-2 array
230     SN_STORE_3(I,K,bi,bj)=SN_STORE_2(I,K,bi,bj)
231     C copy (current time) t to t-1 arrays
232     SN_STORE_2(I,K,bi,bj)=salt(I,J_obc-1,K,bi,bj) -
233     & salt(I,J_obc-2,K,bi,bj)
234     SN_STORE_1(I,K,bi,bj)=salt(I,J_obc-1,K,bi,bj)
235     SN_STORE_4(I,K,bi,bj)=salt(I,J_obc,K,bi,bj)
236 jmc 1.7 #ifdef ALLOW_NONHYDROSTATIC
237     IF ( nonHydrostatic ) THEN
238 adcroft 1.2 C wVel
239     C copy t-1 to t-2 array
240     WN_STORE_3(I,K,bi,bj)=WN_STORE_2(I,K,bi,bj)
241     C copy (current time) t to t-1 arrays
242     WN_STORE_2(I,K,bi,bj)=wVel(I,J_obc-1,K,bi,bj) -
243     & wVel(I,J_obc-2,K,bi,bj)
244     WN_STORE_1(I,K,bi,bj)=wVel(I,J_obc-1,K,bi,bj)
245     WN_STORE_4(I,K,bi,bj)=wVel(I,J_obc,K,bi,bj)
246 jmc 1.7 ENDIF
247     #endif /* ALLOW_NONHYDROSTATIC */
248 adcroft 1.2 ENDIF
249     ENDDO
250     ENDDO
251    
252 heimbach 1.5 #endif /* ALLOW_OBCS_NORTH */
253 adcroft 1.2 #endif /* ALLOW_ORLANSKI */
254     RETURN
255     END

  ViewVC Help
Powered by ViewVC 1.1.22