C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_vecinv/mom_vi_v_coriolis.F,v 1.7 2004/07/20 17:46:38 adcroft Exp $ C $Name: checkpoint55h_post $ #include "MOM_VECINV_OPTIONS.h" SUBROUTINE MOM_VI_V_CORIOLIS( I bi,bj,k, I uFld,omega3,hFacZ,r_hFacZ, O vCoriolisTerm, I myThid) IMPLICIT NONE C *==========================================================* C | S/R MOM_VI_V_CORIOLIS C | o Calculate zonal flux of vorticity at V point C *==========================================================* C == Global variables == #include "SIZE.h" #include "EEPARAMS.h" #include "GRID.h" #include "PARAMS.h" C == Routine arguments == INTEGER bi,bj,k _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vCoriolisTerm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER myThid C == Local variables == LOGICAL use_original_hFac INTEGER I,J _RL uBarXY,vort3v,Zp,Zm _RS epsil PARAMETER ( use_original_hFac=.FALSE. ) epsil = 1. _d -9 DO J=2-Oly,sNy+Oly DO I=1-Olx,sNx+Olx-1 IF ( use_original_hFac ) THEN uBarXY=0.25*( & uFld( i , j )*dyG( i , j ,bi,bj)*hFacW( i , j ,k,bi,bj) & +uFld(i+1, j )*dyG(i+1, j ,bi,bj)*hFacW(i+1, j ,k,bi,bj) & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj)*hFacW( i ,j-1,k,bi,bj) & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj)*hFacW(i+1,j-1,k,bi,bj)) IF (upwindVorticity) THEN IF (uBarXY.GT.0.) THEN vort3v=omega3(i,j)*r_hFacZ(i,j) ELSE vort3v=omega3(i+1,j)*r_hFacZ(i+1,j) ENDIF ELSE vort3v=0.5*(omega3(i,j)*r_hFacZ(i,j) & +omega3(i+1,j)*r_hFacZ(i+1,j)) ENDIF ELSEIF ( SadournyCoriolis ) THEN Zm=0.5*( & uFld( i , j )*dyG( i , j ,bi,bj)*hFacW( i , j ,k,bi,bj) & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj)*hFacW( i ,j-1,k,bi,bj) ) Zp=0.5*( & uFld(i+1, j )*dyG(i+1, j ,bi,bj)*hFacW(i+1, j ,k,bi,bj) & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj)*hFacW(i+1,j-1,k,bi,bj) ) IF (upwindVorticity) THEN IF ( (Zm+Zp) .GT.0.) THEN vort3v=Zm*r_hFacZ( i ,j)*omega3( i ,j) ELSE vort3v=Zp*r_hFacZ(i+1,j)*omega3(i+1,j) ENDIF ELSE Zm=Zm*r_hFacZ( i ,j)*omega3( i ,j) Zp=Zp*r_hFacZ(i+1,j)*omega3(i+1,j) vort3v=0.5*( Zm + Zp ) ENDIF uBarXY=1. ELSE c-- test a different formulation (relatively to hFac) uBarXY=0.5*( & uFld( i , j )*dyG( i , j ,bi,bj)*hFacZ(i,j) & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj)*hFacZ(i,j) & +uFld(i+1, j )*dyG(i+1, j ,bi,bj)*hFacZ(i+1,j) & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj)*hFacZ(i+1,j) & )/MAX( epsil, hFacZ(i,j)+hFacZ(i+1,j) ) IF (upwindVorticity) THEN IF (uBarXY.GT.0.) THEN vort3v=omega3(i,j) ELSE vort3v=omega3(i+1,j) ENDIF ELSE vort3v=0.5*(omega3(i,j)+omega3(i+1,j)) ENDIF ENDIF IF (useJamartMomAdv) & uBarXY = uBarXY * 4. _d 0 * hFacS(i,j,k,bi,bj) & * MAX( epsil, hFacW( i , j ,k,bi,bj)+hFacW( i ,j-1,k,bi,bj) & +hFacW(i+1, j ,k,bi,bj)+hFacW(i+1,j-1,k,bi,bj) ) vCoriolisTerm(i,j)= & -vort3v*uBarXY*recip_dyC(i,j,bi,bj)*_maskS(i,j,k,bi,bj) C high order vorticity advection term c & ... C linear Coriolis term c & -0.5 *(fCoriG(I,J,bi,bj)+fCoriG(I+1,J,bi,bj))*uBarXY C full nonlinear Coriolis term c & -0.5*(omega3(I,J)+omega3(I+1,J))*uBarXY C correct energy conserving form of Coriolis term c & -0.5 *( fCori(I,J ,bi,bj)*uBarX(I,J ,K,bi,bj) + c & fCori(I,J-1,bi,bj)*uBarX(I,J-1,K,bi,bj) ) C original form of Coriolis term (copied from calc_mom_rhs) c & -0.5*(fCori(i,j,bi,bj)+fCori(i,j-1,bi,bj))*uBarXY ENDDO ENDDO RETURN END