/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vi_v_coriolis.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_vecinv/mom_vi_v_coriolis.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.7 - (hide annotations) (download)
Tue Jul 20 17:46:38 2004 UTC (19 years, 10 months ago) by adcroft
Branch: MAIN
CVS Tags: checkpoint57g_pre, checkpoint57b_post, checkpoint57g_post, checkpoint56b_post, checkpoint54d_post, checkpoint54e_post, checkpoint57d_post, checkpoint55, checkpoint57, checkpoint56, checkpoint54f_post, checkpoint55i_post, checkpoint55c_post, checkpoint57f_post, checkpoint57a_post, checkpoint55g_post, checkpoint57c_post, checkpoint55d_post, checkpoint55d_pre, checkpoint57c_pre, checkpoint55j_post, checkpoint55h_post, checkpoint57e_post, checkpoint55b_post, checkpoint55f_post, eckpoint57e_pre, checkpoint56a_post, checkpoint57f_pre, checkpoint56c_post, checkpoint57a_pre, checkpoint55a_post, checkpoint55e_post
Changes since 1.6: +2 -2 lines
Replaced CPP_OPTIONS.h with MOM_VECINV_OPTIONS
 - this was causing a call to diagnostics to not happen

1 adcroft 1.7 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_v_coriolis.F,v 1.6 2004/06/14 17:48:17 adcroft Exp $
2 jmc 1.4 C $Name: $
3 adcroft 1.2
4 adcroft 1.7 #include "MOM_VECINV_OPTIONS.h"
5 adcroft 1.2
6     SUBROUTINE MOM_VI_V_CORIOLIS(
7 jmc 1.4 I bi,bj,k,
8     I uFld,omega3,hFacZ,r_hFacZ,
9 adcroft 1.2 O vCoriolisTerm,
10     I myThid)
11     IMPLICIT NONE
12 jmc 1.4 C *==========================================================*
13     C | S/R MOM_VI_V_CORIOLIS
14     C | o Calculate zonal flux of vorticity at V point
15     C *==========================================================*
16 adcroft 1.2
17     C == Global variables ==
18     #include "SIZE.h"
19     #include "EEPARAMS.h"
20     #include "GRID.h"
21     #include "PARAMS.h"
22    
23     C == Routine arguments ==
24 jmc 1.4 INTEGER bi,bj,k
25 adcroft 1.2 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
26     _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
27 jmc 1.4 _RS hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
28 adcroft 1.2 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
29     _RL vCoriolisTerm(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
30     INTEGER myThid
31    
32     C == Local variables ==
33 adcroft 1.5 LOGICAL use_original_hFac
34 adcroft 1.2 INTEGER I,J
35 adcroft 1.5 _RL uBarXY,vort3v,Zp,Zm
36 jmc 1.4 _RS epsil
37     PARAMETER ( use_original_hFac=.FALSE. )
38    
39     epsil = 1. _d -9
40    
41     DO J=2-Oly,sNy+Oly
42     DO I=1-Olx,sNx+Olx-1
43     IF ( use_original_hFac ) THEN
44 adcroft 1.2 uBarXY=0.25*(
45     & uFld( i , j )*dyG( i , j ,bi,bj)*hFacW( i , j ,k,bi,bj)
46     & +uFld(i+1, j )*dyG(i+1, j ,bi,bj)*hFacW(i+1, j ,k,bi,bj)
47     & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj)*hFacW( i ,j-1,k,bi,bj)
48     & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj)*hFacW(i+1,j-1,k,bi,bj))
49 adcroft 1.5 IF (upwindVorticity) THEN
50 adcroft 1.2 IF (uBarXY.GT.0.) THEN
51     vort3v=omega3(i,j)*r_hFacZ(i,j)
52     ELSE
53     vort3v=omega3(i+1,j)*r_hFacZ(i+1,j)
54     ENDIF
55     ELSE
56 jmc 1.4 vort3v=0.5*(omega3(i,j)*r_hFacZ(i,j)
57     & +omega3(i+1,j)*r_hFacZ(i+1,j))
58 adcroft 1.2 ENDIF
59 adcroft 1.5 ELSEIF ( SadournyCoriolis ) THEN
60     Zm=0.5*(
61     & uFld( i , j )*dyG( i , j ,bi,bj)*hFacW( i , j ,k,bi,bj)
62     & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj)*hFacW( i ,j-1,k,bi,bj) )
63     Zp=0.5*(
64     & uFld(i+1, j )*dyG(i+1, j ,bi,bj)*hFacW(i+1, j ,k,bi,bj)
65     & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj)*hFacW(i+1,j-1,k,bi,bj) )
66     IF (upwindVorticity) THEN
67     IF ( (Zm+Zp) .GT.0.) THEN
68     vort3v=Zm*r_hFacZ( i ,j)*omega3( i ,j)
69     ELSE
70     vort3v=Zp*r_hFacZ(i+1,j)*omega3(i+1,j)
71     ENDIF
72     ELSE
73     Zm=Zm*r_hFacZ( i ,j)*omega3( i ,j)
74     Zp=Zp*r_hFacZ(i+1,j)*omega3(i+1,j)
75     vort3v=0.5*( Zm + Zp )
76     ENDIF
77     uBarXY=1.
78 jmc 1.4 ELSE
79     c-- test a different formulation (relatively to hFac)
80     uBarXY=0.5*(
81     & uFld( i , j )*dyG( i , j ,bi,bj)*hFacZ(i,j)
82     & +uFld( i ,j-1)*dyG( i ,j-1,bi,bj)*hFacZ(i,j)
83     & +uFld(i+1, j )*dyG(i+1, j ,bi,bj)*hFacZ(i+1,j)
84     & +uFld(i+1,j-1)*dyG(i+1,j-1,bi,bj)*hFacZ(i+1,j)
85     & )/MAX( epsil, hFacZ(i,j)+hFacZ(i+1,j) )
86 adcroft 1.5 IF (upwindVorticity) THEN
87 jmc 1.4 IF (uBarXY.GT.0.) THEN
88     vort3v=omega3(i,j)
89     ELSE
90     vort3v=omega3(i+1,j)
91     ENDIF
92     ELSE
93     vort3v=0.5*(omega3(i,j)+omega3(i+1,j))
94     ENDIF
95     ENDIF
96 adcroft 1.5
97 adcroft 1.6 IF (useJamartMomAdv)
98 adcroft 1.5 & uBarXY = uBarXY * 4. _d 0 * hFacS(i,j,k,bi,bj)
99     & * MAX( epsil, hFacW( i , j ,k,bi,bj)+hFacW( i ,j-1,k,bi,bj)
100     & +hFacW(i+1, j ,k,bi,bj)+hFacW(i+1,j-1,k,bi,bj) )
101 jmc 1.4
102     vCoriolisTerm(i,j)=
103     & -vort3v*uBarXY*recip_dyC(i,j,bi,bj)*_maskS(i,j,k,bi,bj)
104 adcroft 1.2 C high order vorticity advection term
105 heimbach 1.3 c & ...
106 adcroft 1.2 C linear Coriolis term
107     c & -0.5 *(fCoriG(I,J,bi,bj)+fCoriG(I+1,J,bi,bj))*uBarXY
108     C full nonlinear Coriolis term
109     c & -0.5*(omega3(I,J)+omega3(I+1,J))*uBarXY
110     C correct energy conserving form of Coriolis term
111     c & -0.5 *( fCori(I,J ,bi,bj)*uBarX(I,J ,K,bi,bj) +
112     c & fCori(I,J-1,bi,bj)*uBarX(I,J-1,K,bi,bj) )
113     C original form of Coriolis term (copied from calc_mom_rhs)
114     c & -0.5*(fCori(i,j,bi,bj)+fCori(i,j-1,bi,bj))*uBarXY
115     ENDDO
116 jmc 1.4 ENDDO
117 adcroft 1.2
118     RETURN
119     END

  ViewVC Help
Powered by ViewVC 1.1.22