C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_vecinv/mom_vi_u_coriolis.F,v 1.5 2004/06/02 13:23:55 adcroft Exp $ C $Name: $ #include "CPP_OPTIONS.h" SUBROUTINE MOM_VI_U_CORIOLIS( I bi,bj,k, I vFld,omega3,hFacZ,r_hFacZ, O uCoriolisTerm, I myThid) IMPLICIT NONE C *==========================================================* C | S/R MOM_VI_U_CORIOLIS C | o Calculate meridional flux of vorticity at U point C *==========================================================* C == Global variables == #include "SIZE.h" #include "EEPARAMS.h" #include "GRID.h" #include "PARAMS.h" C == Routine arguments == INTEGER bi,bj,K _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uCoriolisTerm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER myThid C == Local variables == LOGICAL use_original_hFac INTEGER I,J _RL vBarXY,vort3u,Zp,Zm _RS epsil PARAMETER ( use_original_hFac=.FALSE. ) epsil = 1. _d -9 DO J=1-Oly,sNy+Oly-1 DO I=2-Olx,sNx+Olx IF ( use_original_hFac ) THEN vBarXY=0.25*( & vFld( i , j )*dxG( i , j ,bi,bj)*hFacS( i , j ,k,bi,bj) & +vFld( i ,j+1)*dxG( i ,j+1,bi,bj)*hFacS( i ,j+1,k,bi,bj) & +vFld(i-1, j )*dxG(i-1, j ,bi,bj)*hFacS(i-1, j ,k,bi,bj) & +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj)*hFacS(i-1,j+1,k,bi,bj)) IF (upwindVorticity) THEN IF (vBarXY.GT.0.) THEN vort3u=omega3(I,J)*r_hFacZ(i,j) ELSE vort3u=omega3(I,J+1)*r_hFacZ(i,j+1) ENDIF ELSE vort3u=0.5*(omega3(i,j)*r_hFacZ(i,j) & +omega3(i,j+1)*r_hFacZ(i,j+1)) ENDIF ELSEIF ( SadournyCoriolis ) THEN Zm=0.5*( & vFld( i , j )*dxG( i , j ,bi,bj)*hFacS( i , j ,k,bi,bj) & +vFld(i-1, j )*dxG(i-1, j ,bi,bj)*hFacS(i-1, j ,k,bi,bj) ) Zp=0.5*( & vFld( i ,j+1)*dxG( i ,j+1,bi,bj)*hFacS( i ,j+1,k,bi,bj) & +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj)*hFacS(i-1,j+1,k,bi,bj) ) IF (upwindVorticity) THEN IF ( (Zm+Zp) .GT.0.) THEN vort3u=Zm*r_hFacZ(i, j )*omega3(i, j ) ELSE vort3u=Zp*r_hFacZ(i,j+1)*omega3(i,j+1) ENDIF ELSE Zm=Zm*r_hFacZ(i, j )*omega3(i, j ) Zp=Zp*r_hFacZ(i,j+1)*omega3(i,j+1) vort3u=0.5*( Zm + Zp ) ENDIF vBarXY=1. ELSE c-- test a different formulation (relatively to hFac) vBarXY=0.5*( & vFld( i , j )*dxG( i , j ,bi,bj)*hFacZ(i,j) & +vFld(i-1, j )*dxG(i-1, j ,bi,bj)*hFacZ(i,j) & +vFld( i ,j+1)*dxG( i ,j+1,bi,bj)*hFacZ(i,j+1) & +vFld(i-1,j+1)*dxG(i-1,j+1,bi,bj)*hFacZ(i,j+1) & )/MAX( epsil, hFacZ(i,j)+hFacZ(i,j+1) ) IF (upwindVorticity) THEN IF (vBarXY.GT.0.) THEN vort3u=omega3(i,j) ELSE vort3u=omega3(i,j+1) ENDIF ELSE vort3u=0.5*(omega3(i,j)+omega3(i,j+1)) ENDIF ENDIF IF (useJamartWetpoints) & vBarXY = vBarXY * 4. _d 0 * hFacW(i,j,k,bi,bj) & * MAX( epsil, hFacS( i , j ,k,bi,bj)+hFacS(i-1, j ,k,bi,bj) & +hFacS( j ,i+1,k,bi,bj)+hFacS(i-1,j+1,k,bi,bj) ) uCoriolisTerm(i,j)= & +vort3u*vBarXY*recip_dxC(i,j,bi,bj)*_maskW(i,j,k,bi,bj) cph *note* put these comments after end of continued line cph to ensure TAMC compatibility C high order vorticity advection term c & ... C linear Coriolis term c & +0.5*(fCoriG(I,J,bi,bj)+fCoriG(I,J+1,bi,bj))*vBarXY C full nonlinear Coriolis term c & +0.5*(omega3(I,J)+omega3(I,J+1))*vBarXY C correct energy conserving form of Coriolis term c & +0.5*( fCori(I ,J,bi,bj)*vBarY(I ,J,K,bi,bj) + c & fCori(I-1,J,bi,bj)*vBarY(I-1,J,K,bi,bj) ) C original form of Coriolis term (copied from calc_mom_rhs) c & +0.5*(fCori(i,j,bi,bj)+fCori(i-1,j,bi,bj))*vBarXY ENDDO ENDDO RETURN END