/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Sat Feb 7 23:15:47 2004 UTC (20 years, 7 months ago) by dimitri
Branch: MAIN
CVS Tags: checkpoint52l_pre, hrcube4, hrcube5, checkpoint52j_pre, checkpoint52l_post, checkpoint52k_post, checkpoint53, hrcube_3, checkpoint52m_post, checkpoint53c_post, checkpoint53a_post, checkpoint52j_post, checkpoint52n_post, checkpoint53b_pre, checkpoint53b_post, checkpoint53d_pre
Changes since 1.4: +3 -3 lines
minor bug fixes for viscA4Grid

1 C $Header: /usr/local/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F,v 1.4 2004/02/07 16:27:19 adcroft Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 SUBROUTINE MOM_VI_HDISSIP(
7 I bi,bj,k,
8 I hDiv,vort3,hFacZ,dStar,zStar,
9 O uDissip,vDissip,
10 I myThid)
11 IMPLICIT NONE
12 C
13 C Calculate horizontal dissipation terms
14 C [del^2 - del^4] (u,v)
15 C
16
17 C == Global variables ==
18 #include "SIZE.h"
19 #include "GRID.h"
20 #include "EEPARAMS.h"
21 #include "PARAMS.h"
22
23 C == Routine arguments ==
24 INTEGER bi,bj,k
25 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
26 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
27 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
28 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
29 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
30 _RL uDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
31 _RL vDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
32 INTEGER myThid
33
34 C == Local variables ==
35 INTEGER I,J
36 _RL Zip,Zij,Zpj,Dim,Dij,Dmj,uD2,vD2,uD4,vD4
37
38 C - Laplacian and bi-harmonic terms
39 DO j=2-Oly,sNy+Oly-1
40 DO i=2-Olx,sNx+Olx-1
41
42 c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*hDiv( i ,j-1)
43 c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*hDiv( i , j )
44 c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*hDiv(i-1, j )
45 c Dim=dyF( i ,j-1,bi,bj)* hDiv( i ,j-1)
46 c Dij=dyF( i , j ,bi,bj)* hDiv( i , j )
47 c Dmj=dyF(i-1, j ,bi,bj)* hDiv(i-1, j )
48 Dim= hDiv( i ,j-1)
49 Dij= hDiv( i , j )
50 Dmj= hDiv(i-1, j )
51
52 c Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*vort3( i ,j+1)
53 c Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*vort3( i , j )
54 c Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*vort3(i+1, j )
55 Zip= hFacZ( i ,j+1)*vort3( i ,j+1)
56 Zij= hFacZ( i , j )*vort3( i , j )
57 Zpj= hFacZ(i+1, j )*vort3(i+1, j )
58
59 C This bit scales the harmonic dissipation operator to be proportional
60 C to the grid-cell area over the time-step. viscAh is then non-dimensional
61 C and should be less than 1/8, for example viscAh=0.01
62 if (viscAhGrid*deltaTmom.NE.0.) then
63 Dij=Dij*
64 & min(viscAh+viscAhGrid*rA ( i , j ,bi,bj)/deltaTmom,viscAhMax)
65 Dim=Dim*
66 & min(viscAh+viscAhGrid*rA ( i ,j-1,bi,bj)/deltaTmom,viscAhMax)
67 Dmj=Dmj*
68 & min(viscAh+viscAhGrid*rA (i-1, j ,bi,bj)/deltaTmom,viscAhMax)
69 Zij=Zij*
70 & min(viscAh+viscAhGrid*rAz( i , j ,bi,bj)/deltaTmom,viscAhMax)
71 Zip=Zip*
72 & min(viscAh+viscAhGrid*rAz( i ,j+1,bi,bj)/deltaTmom,viscAhMax)
73 Zpj=Zpj*
74 & min(viscAh+viscAhGrid*rAz(i+1, j ,bi,bj)/deltaTmom,viscAhMax)
75 uD2 = (
76 & cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj)
77 & -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) )
78 vD2 = (
79 & recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj)
80 & *cosFacV(j,bi,bj)
81 & +( Dij-Dim )*recip_DYC(i,j,bi,bj) )
82 else
83 c uD2 = recip_rAw(i,j,bi,bj)*(
84 c & recip_hFacW(i,j,k,bi,bj)*viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) )
85 c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) )
86 c uD2 = recip_rAw(i,j,bi,bj)*(
87 c & viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) )
88 c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) )
89 uD2 = viscAh*(
90 & cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj)
91 & -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) )
92 c vD2 = recip_rAs(i,j,bi,bj)*(
93 c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) )
94 c & +recip_hFacS(i,j,k,bi,bj)*viscAh*( Dij-Dim ) )
95 c vD2 = recip_rAs(i,j,bi,bj)*(
96 c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) )
97 c & + viscAh*( Dij-Dim ) )
98 vD2 = viscAh*(
99 & recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj)
100 & *cosFacV(j,bi,bj)
101 & +( Dij-Dim )*recip_DYC(i,j,bi,bj) )
102 endif
103
104 c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*dStar( i ,j-1)
105 c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*dStar( i , j )
106 c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*dStar(i-1, j )
107 Dim=dyF( i ,j-1,bi,bj)* dStar( i ,j-1)
108 Dij=dyF( i , j ,bi,bj)* dStar( i , j )
109 Dmj=dyF(i-1, j ,bi,bj)* dStar(i-1, j )
110
111 Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*zStar( i ,j+1)
112 Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*zStar( i , j )
113 Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*zStar(i+1, j )
114
115 C This bit scales the harmonic dissipation operator to be proportional
116 C to the grid-cell area over the time-step. viscAh is then non-dimensional
117 C and should be less than 1/8, for example viscAh=0.01
118 if (viscA4Grid*deltaTmom.NE.0.) then
119 Dij = Dij * min(
120 & viscA4+viscA4Grid*(rA ( i , j ,bi,bj)**2)/deltaTmom,
121 & viscA4Max)
122 Dim = Dim * min(
123 & viscA4+viscA4Grid*(rA ( i ,j-1,bi,bj)**2)/deltaTmom,
124 & viscA4Max)
125 Dmj = Dmj * min(
126 & viscA4+viscA4Grid*(rA (i-1, j ,bi,bj)**2)/deltaTmom,
127 & viscA4Max)
128 Zij = Zij * min(
129 & viscA4+viscA4Grid*(rAz( i , j ,bi,bj)**2)/deltaTmom,
130 & viscA4Max)
131 Zip = Zip * min(
132 & viscA4+viscA4Grid*(rAz( i ,j+1,bi,bj)**2)/deltaTmom,
133 & viscA4Max)
134 Zpj = Zpj * min(
135 & viscA4+viscA4Grid*(rAz(i+1, j ,bi,bj)**2)/deltaTmom,
136 & viscA4Max)
137 uD4 = recip_rAw(i,j,bi,bj)*(
138 & ( (Dij-Dmj)*cosFacU(j,bi,bj) )
139 & -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij ) )
140 vD4 = recip_rAs(i,j,bi,bj)*(
141 & recip_hFacS(i,j,k,bi,bj)*( (Zpj-Zij)*cosFacV(j,bi,bj) )
142 & + ( Dij-Dim ) )
143 else
144 c uD4 = recip_rAw(i,j,bi,bj)*(
145 c & recip_hFacW(i,j,k,bi,bj)*viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) )
146 c & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) )
147 uD4 = recip_rAw(i,j,bi,bj)*(
148 & viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) )
149 & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) )
150
151 c vD4 = recip_rAs(i,j,bi,bj)*(
152 c & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) )
153 c & +recip_hFacS(i,j,k,bi,bj)*viscA4*( Dij-Dim ) )
154 vD4 = recip_rAs(i,j,bi,bj)*(
155 & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) )
156 & + viscA4*( Dij-Dim ) )
157 endif
158
159 uDissip(i,j) = uD2 - uD4
160 vDissip(i,j) = vD2 - vD4
161
162 ENDDO
163 ENDDO
164
165 RETURN
166 END

  ViewVC Help
Powered by ViewVC 1.1.22