/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F
ViewVC logotype

Annotation of /MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download)
Sat Feb 7 23:15:47 2004 UTC (20 years, 4 months ago) by dimitri
Branch: MAIN
CVS Tags: checkpoint52l_pre, hrcube4, hrcube5, checkpoint52j_pre, checkpoint52l_post, checkpoint52k_post, checkpoint53, hrcube_3, checkpoint52m_post, checkpoint53c_post, checkpoint53a_post, checkpoint52j_post, checkpoint52n_post, checkpoint53b_pre, checkpoint53b_post, checkpoint53d_pre
Changes since 1.4: +3 -3 lines
minor bug fixes for viscA4Grid

1 dimitri 1.5 C $Header: /usr/local/gcmpack/MITgcm/pkg/mom_vecinv/mom_vi_hdissip.F,v 1.4 2004/02/07 16:27:19 adcroft Exp $
2 jmc 1.3 C $Name: $
3 adcroft 1.2
4     #include "CPP_OPTIONS.h"
5    
6     SUBROUTINE MOM_VI_HDISSIP(
7     I bi,bj,k,
8     I hDiv,vort3,hFacZ,dStar,zStar,
9     O uDissip,vDissip,
10     I myThid)
11     IMPLICIT NONE
12     C
13     C Calculate horizontal dissipation terms
14     C [del^2 - del^4] (u,v)
15     C
16    
17     C == Global variables ==
18     #include "SIZE.h"
19     #include "GRID.h"
20     #include "EEPARAMS.h"
21     #include "PARAMS.h"
22    
23     C == Routine arguments ==
24     INTEGER bi,bj,k
25     _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
26     _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
27     _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
28     _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
29     _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
30     _RL uDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
31     _RL vDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
32     INTEGER myThid
33    
34     C == Local variables ==
35     INTEGER I,J
36     _RL Zip,Zij,Zpj,Dim,Dij,Dmj,uD2,vD2,uD4,vD4
37    
38     C - Laplacian and bi-harmonic terms
39     DO j=2-Oly,sNy+Oly-1
40     DO i=2-Olx,sNx+Olx-1
41    
42     c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*hDiv( i ,j-1)
43     c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*hDiv( i , j )
44     c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*hDiv(i-1, j )
45     c Dim=dyF( i ,j-1,bi,bj)* hDiv( i ,j-1)
46     c Dij=dyF( i , j ,bi,bj)* hDiv( i , j )
47     c Dmj=dyF(i-1, j ,bi,bj)* hDiv(i-1, j )
48     Dim= hDiv( i ,j-1)
49     Dij= hDiv( i , j )
50     Dmj= hDiv(i-1, j )
51    
52     c Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*vort3( i ,j+1)
53     c Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*vort3( i , j )
54     c Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*vort3(i+1, j )
55     Zip= hFacZ( i ,j+1)*vort3( i ,j+1)
56     Zij= hFacZ( i , j )*vort3( i , j )
57     Zpj= hFacZ(i+1, j )*vort3(i+1, j )
58    
59 adcroft 1.4 C This bit scales the harmonic dissipation operator to be proportional
60     C to the grid-cell area over the time-step. viscAh is then non-dimensional
61     C and should be less than 1/8, for example viscAh=0.01
62     if (viscAhGrid*deltaTmom.NE.0.) then
63     Dij=Dij*
64     & min(viscAh+viscAhGrid*rA ( i , j ,bi,bj)/deltaTmom,viscAhMax)
65     Dim=Dim*
66     & min(viscAh+viscAhGrid*rA ( i ,j-1,bi,bj)/deltaTmom,viscAhMax)
67     Dmj=Dmj*
68     & min(viscAh+viscAhGrid*rA (i-1, j ,bi,bj)/deltaTmom,viscAhMax)
69     Zij=Zij*
70     & min(viscAh+viscAhGrid*rAz( i , j ,bi,bj)/deltaTmom,viscAhMax)
71     Zip=Zip*
72     & min(viscAh+viscAhGrid*rAz( i ,j+1,bi,bj)/deltaTmom,viscAhMax)
73     Zpj=Zpj*
74     & min(viscAh+viscAhGrid*rAz(i+1, j ,bi,bj)/deltaTmom,viscAhMax)
75     uD2 = (
76     & cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj)
77     & -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) )
78     vD2 = (
79     & recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj)
80     & *cosFacV(j,bi,bj)
81     & +( Dij-Dim )*recip_DYC(i,j,bi,bj) )
82     else
83 adcroft 1.2 c uD2 = recip_rAw(i,j,bi,bj)*(
84     c & recip_hFacW(i,j,k,bi,bj)*viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) )
85     c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) )
86     c uD2 = recip_rAw(i,j,bi,bj)*(
87     c & viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) )
88     c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) )
89 adcroft 1.4 uD2 = viscAh*(
90 adcroft 1.2 & cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj)
91 jmc 1.3 & -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) )
92 adcroft 1.2 c vD2 = recip_rAs(i,j,bi,bj)*(
93     c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) )
94     c & +recip_hFacS(i,j,k,bi,bj)*viscAh*( Dij-Dim ) )
95     c vD2 = recip_rAs(i,j,bi,bj)*(
96     c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) )
97     c & + viscAh*( Dij-Dim ) )
98 dimitri 1.5 vD2 = viscAh*(
99 jmc 1.3 & recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj)
100 adcroft 1.2 & *cosFacV(j,bi,bj)
101     & +( Dij-Dim )*recip_DYC(i,j,bi,bj) )
102 adcroft 1.4 endif
103 adcroft 1.2
104     c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*dStar( i ,j-1)
105     c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*dStar( i , j )
106     c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*dStar(i-1, j )
107     Dim=dyF( i ,j-1,bi,bj)* dStar( i ,j-1)
108     Dij=dyF( i , j ,bi,bj)* dStar( i , j )
109     Dmj=dyF(i-1, j ,bi,bj)* dStar(i-1, j )
110    
111     Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*zStar( i ,j+1)
112     Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*zStar( i , j )
113     Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*zStar(i+1, j )
114    
115 adcroft 1.4 C This bit scales the harmonic dissipation operator to be proportional
116     C to the grid-cell area over the time-step. viscAh is then non-dimensional
117     C and should be less than 1/8, for example viscAh=0.01
118 dimitri 1.5 if (viscA4Grid*deltaTmom.NE.0.) then
119 adcroft 1.4 Dij = Dij * min(
120     & viscA4+viscA4Grid*(rA ( i , j ,bi,bj)**2)/deltaTmom,
121     & viscA4Max)
122     Dim = Dim * min(
123     & viscA4+viscA4Grid*(rA ( i ,j-1,bi,bj)**2)/deltaTmom,
124     & viscA4Max)
125     Dmj = Dmj * min(
126     & viscA4+viscA4Grid*(rA (i-1, j ,bi,bj)**2)/deltaTmom,
127     & viscA4Max)
128     Zij = Zij * min(
129     & viscA4+viscA4Grid*(rAz( i , j ,bi,bj)**2)/deltaTmom,
130     & viscA4Max)
131     Zip = Zip * min(
132     & viscA4+viscA4Grid*(rAz( i ,j+1,bi,bj)**2)/deltaTmom,
133     & viscA4Max)
134     Zpj = Zpj * min(
135     & viscA4+viscA4Grid*(rAz(i+1, j ,bi,bj)**2)/deltaTmom,
136     & viscA4Max)
137     uD4 = recip_rAw(i,j,bi,bj)*(
138     & ( (Dij-Dmj)*cosFacU(j,bi,bj) )
139     & -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij ) )
140     vD4 = recip_rAs(i,j,bi,bj)*(
141     & recip_hFacS(i,j,k,bi,bj)*( (Zpj-Zij)*cosFacV(j,bi,bj) )
142     & + ( Dij-Dim ) )
143     else
144 adcroft 1.2 c uD4 = recip_rAw(i,j,bi,bj)*(
145     c & recip_hFacW(i,j,k,bi,bj)*viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) )
146     c & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) )
147 adcroft 1.4 uD4 = recip_rAw(i,j,bi,bj)*(
148 adcroft 1.2 & viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) )
149     & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) )
150    
151     c vD4 = recip_rAs(i,j,bi,bj)*(
152     c & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) )
153     c & +recip_hFacS(i,j,k,bi,bj)*viscA4*( Dij-Dim ) )
154 adcroft 1.4 vD4 = recip_rAs(i,j,bi,bj)*(
155 adcroft 1.2 & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) )
156     & + viscA4*( Dij-Dim ) )
157 adcroft 1.4 endif
158 adcroft 1.2
159     uDissip(i,j) = uD2 - uD4
160     vDissip(i,j) = vD2 - vD4
161    
162     ENDDO
163     ENDDO
164    
165     RETURN
166     END

  ViewVC Help
Powered by ViewVC 1.1.22