/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.6 - (show annotations) (download)
Thu Apr 17 13:42:53 2003 UTC (21 years ago) by jmc
Branch: MAIN
CVS Tags: checkpoint50c_post, checkpoint50c_pre, checkpoint51, checkpoint50d_post, checkpoint51d_post, checkpoint51b_pre, checkpoint50f_post, checkpoint50f_pre, checkpoint51b_post, checkpoint51c_post, checkpoint50g_post, checkpoint50h_post, checkpoint50e_pre, checkpoint50i_post, checkpoint50e_post, checkpoint50d_pre, checkpoint50b_post, checkpoint51a_post
Changes since 1.5: +12 -12 lines
  move forcing & CD-scheme calls from mom_fluxform & mom_vecinv
  to timestep.F

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.5 2003/04/11 13:35:03 jmc Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 SUBROUTINE MOM_VECINV(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
8 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
9 U fVerU, fVerV,
10 I myCurrentTime, myIter, myThid)
11 C /==========================================================\
12 C | S/R MOM_VECINV |
13 C | o Form the right hand-side of the momentum equation. |
14 C |==========================================================|
15 C | Terms are evaluated one layer at a time working from |
16 C | the bottom to the top. The vertically integrated |
17 C | barotropic flow tendency term is evluated by summing the |
18 C | tendencies. |
19 C | Notes: |
20 C | We have not sorted out an entirely satisfactory formula |
21 C | for the diffusion equation bc with lopping. The present |
22 C | form produces a diffusive flux that does not scale with |
23 C | open-area. Need to do something to solidfy this and to |
24 C | deal "properly" with thin walls. |
25 C \==========================================================/
26 IMPLICIT NONE
27
28 C == Global variables ==
29 #include "SIZE.h"
30 #include "DYNVARS.h"
31 #include "EEPARAMS.h"
32 #include "PARAMS.h"
33 #include "GRID.h"
34
35 C == Routine arguments ==
36 C fVerU - Flux of momentum in the vertical
37 C fVerV direction out of the upper face of a cell K
38 C ( flux into the cell above ).
39 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
40 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
41 C results will be set.
42 C kUp, kDown - Index for upper and lower layers.
43 C myThid - Instance number for this innvocation of CALC_MOM_RHS
44 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
45 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
46 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
47 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
48 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
49 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
50 INTEGER kUp,kDown
51 _RL myCurrentTime
52 INTEGER myIter
53 INTEGER myThid
54 INTEGER bi,bj,iMin,iMax,jMin,jMax
55
56 C == Functions ==
57 LOGICAL DIFFERENT_MULTIPLE
58 EXTERNAL DIFFERENT_MULTIPLE
59
60 C == Local variables ==
61 _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
62 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
63 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
64 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66 _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 C I,J,K - Loop counters
85 INTEGER i,j,k
86 C rVelMaskOverride - Factor for imposing special surface boundary conditions
87 C ( set according to free-surface condition ).
88 C hFacROpen - Lopped cell factos used tohold fraction of open
89 C hFacRClosed and closed cell wall.
90 _RL rVelMaskOverride
91 C xxxFac - On-off tracer parameters used for switching terms off.
92 _RL uDudxFac
93 _RL AhDudxFac
94 _RL A4DuxxdxFac
95 _RL vDudyFac
96 _RL AhDudyFac
97 _RL A4DuyydyFac
98 _RL rVelDudrFac
99 _RL ArDudrFac
100 _RL fuFac
101 _RL phxFac
102 _RL mtFacU
103 _RL uDvdxFac
104 _RL AhDvdxFac
105 _RL A4DvxxdxFac
106 _RL vDvdyFac
107 _RL AhDvdyFac
108 _RL A4DvyydyFac
109 _RL rVelDvdrFac
110 _RL ArDvdrFac
111 _RL fvFac
112 _RL phyFac
113 _RL vForcFac
114 _RL mtFacV
115 INTEGER km1,kp1
116 _RL wVelBottomOverride
117 LOGICAL bottomDragTerms
118 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
119 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
120 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122
123 km1=MAX(1,k-1)
124 kp1=MIN(Nr,k+1)
125 rVelMaskOverride=1.
126 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
127 wVelBottomOverride=1.
128 IF (k.EQ.Nr) wVelBottomOverride=0.
129
130 C Initialise intermediate terms
131 DO J=1-OLy,sNy+OLy
132 DO I=1-OLx,sNx+OLx
133 aF(i,j) = 0.
134 vF(i,j) = 0.
135 vrF(i,j) = 0.
136 uCf(i,j) = 0.
137 vCf(i,j) = 0.
138 mT(i,j) = 0.
139 pF(i,j) = 0.
140 del2u(i,j) = 0.
141 del2v(i,j) = 0.
142 dStar(i,j) = 0.
143 zStar(i,j) = 0.
144 uDiss(i,j) = 0.
145 vDiss(i,j) = 0.
146 vort3(i,j) = 0.
147 omega3(i,j) = 0.
148 ke(i,j) = 0.
149 ENDDO
150 ENDDO
151
152 C-- Term by term tracer parmeters
153 C o U momentum equation
154 uDudxFac = afFacMom*1.
155 AhDudxFac = vfFacMom*1.
156 A4DuxxdxFac = vfFacMom*1.
157 vDudyFac = afFacMom*1.
158 AhDudyFac = vfFacMom*1.
159 A4DuyydyFac = vfFacMom*1.
160 rVelDudrFac = afFacMom*1.
161 ArDudrFac = vfFacMom*1.
162 mTFacU = mtFacMom*1.
163 fuFac = cfFacMom*1.
164 phxFac = pfFacMom*1.
165 C o V momentum equation
166 uDvdxFac = afFacMom*1.
167 AhDvdxFac = vfFacMom*1.
168 A4DvxxdxFac = vfFacMom*1.
169 vDvdyFac = afFacMom*1.
170 AhDvdyFac = vfFacMom*1.
171 A4DvyydyFac = vfFacMom*1.
172 rVelDvdrFac = afFacMom*1.
173 ArDvdrFac = vfFacMom*1.
174 mTFacV = mtFacMom*1.
175 fvFac = cfFacMom*1.
176 phyFac = pfFacMom*1.
177 vForcFac = foFacMom*1.
178
179 IF ( no_slip_bottom
180 & .OR. bottomDragQuadratic.NE.0.
181 & .OR. bottomDragLinear.NE.0.) THEN
182 bottomDragTerms=.TRUE.
183 ELSE
184 bottomDragTerms=.FALSE.
185 ENDIF
186
187 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
188 IF (staggerTimeStep) THEN
189 phxFac = 0.
190 phyFac = 0.
191 ENDIF
192
193 C-- Calculate open water fraction at vorticity points
194 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
195
196 C---- Calculate common quantities used in both U and V equations
197 C Calculate tracer cell face open areas
198 DO j=1-OLy,sNy+OLy
199 DO i=1-OLx,sNx+OLx
200 xA(i,j) = _dyG(i,j,bi,bj)
201 & *drF(k)*_hFacW(i,j,k,bi,bj)
202 yA(i,j) = _dxG(i,j,bi,bj)
203 & *drF(k)*_hFacS(i,j,k,bi,bj)
204 ENDDO
205 ENDDO
206
207 C Make local copies of horizontal flow field
208 DO j=1-OLy,sNy+OLy
209 DO i=1-OLx,sNx+OLx
210 uFld(i,j) = uVel(i,j,k,bi,bj)
211 vFld(i,j) = vVel(i,j,k,bi,bj)
212 ENDDO
213 ENDDO
214
215 C Calculate velocity field "volume transports" through tracer cell faces.
216 DO j=1-OLy,sNy+OLy
217 DO i=1-OLx,sNx+OLx
218 uTrans(i,j) = uFld(i,j)*xA(i,j)
219 vTrans(i,j) = vFld(i,j)*yA(i,j)
220 ENDDO
221 ENDDO
222
223 CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
224
225 CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid)
226
227 CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
228
229 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
230
231 IF (momViscosity) THEN
232 C Calculate del^2 u and del^2 v for bi-harmonic term
233 IF (viscA4.NE.0.) THEN
234 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
235 O del2u,del2v,
236 & myThid)
237 CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid)
238 CALL MOM_VI_CALC_RELVORT3(
239 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
240 ENDIF
241 C Calculate dissipation terms for U and V equations
242 C in terms of vorticity and divergence
243 IF (viscAh.NE.0. .OR. viscA4.NE.0.) THEN
244 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
245 O uDiss,vDiss,
246 & myThid)
247 ENDIF
248 C or in terms of tension and strain
249 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
250 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
251 O tension,
252 I myThid)
253 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
254 O strain,
255 I myThid)
256 CALL MOM_HDISSIP(bi,bj,k,
257 I tension,strain,hFacZ,viscAtension,viscAstrain,
258 O uDiss,vDiss,
259 I myThid)
260 ENDIF
261 ENDIF
262
263 C---- Zonal momentum equation starts here
264
265 C-- Vertical flux (fVer is at upper face of "u" cell)
266
267 C Eddy component of vertical flux (interior component only) -> vrF
268 IF (momViscosity.AND..NOT.implicitViscosity)
269 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
270
271 C Combine fluxes
272 DO j=jMin,jMax
273 DO i=iMin,iMax
274 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
275 ENDDO
276 ENDDO
277
278 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
279 DO j=2-Oly,sNy+Oly-1
280 DO i=2-Olx,sNx+Olx-1
281 gU(i,j,k,bi,bj) = uDiss(i,j)
282 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
283 & *recip_rAw(i,j,bi,bj)
284 & *(
285 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
286 & )
287 & - phxFac*dPhiHydX(i,j)
288 ENDDO
289 ENDDO
290
291 C-- No-slip and drag BCs appear as body forces in cell abutting topography
292 IF (momViscosity.AND.no_slip_sides) THEN
293 C- No-slip BCs impose a drag at walls...
294 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
295 DO j=jMin,jMax
296 DO i=iMin,iMax
297 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
298 ENDDO
299 ENDDO
300 ENDIF
301 C- No-slip BCs impose a drag at bottom
302 IF (momViscosity.AND.bottomDragTerms) THEN
303 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
304 DO j=jMin,jMax
305 DO i=iMin,iMax
306 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
307 ENDDO
308 ENDDO
309 ENDIF
310
311 C-- Forcing term (moved to timestep.F)
312 c IF (momForcing)
313 c & CALL EXTERNAL_FORCING_U(
314 c I iMin,iMax,jMin,jMax,bi,bj,k,
315 c I myCurrentTime,myThid)
316
317 C-- Metric terms for curvilinear grid systems
318 c IF (usingSphericalPolarMTerms) THEN
319 C o Spherical polar grid metric terms
320 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
321 c DO j=jMin,jMax
322 c DO i=iMin,iMax
323 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
324 c ENDDO
325 c ENDDO
326 c ENDIF
327
328
329 C---- Meridional momentum equation starts here
330
331 C-- Vertical flux (fVer is at upper face of "v" cell)
332
333 C Eddy component of vertical flux (interior component only) -> vrF
334 IF (momViscosity.AND..NOT.implicitViscosity)
335 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
336
337 C Combine fluxes -> fVerV
338 DO j=jMin,jMax
339 DO i=iMin,iMax
340 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
341 ENDDO
342 ENDDO
343
344 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
345 DO j=jMin,jMax
346 DO i=iMin,iMax
347 gV(i,j,k,bi,bj) = vDiss(i,j)
348 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
349 & *recip_rAs(i,j,bi,bj)
350 & *(
351 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
352 & )
353 & - phyFac*dPhiHydY(i,j)
354 ENDDO
355 ENDDO
356
357 C-- No-slip and drag BCs appear as body forces in cell abutting topography
358 IF (momViscosity.AND.no_slip_sides) THEN
359 C- No-slip BCs impose a drag at walls...
360 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
361 DO j=jMin,jMax
362 DO i=iMin,iMax
363 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
364 ENDDO
365 ENDDO
366 ENDIF
367 C- No-slip BCs impose a drag at bottom
368 IF (momViscosity.AND.bottomDragTerms) THEN
369 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
370 DO j=jMin,jMax
371 DO i=iMin,iMax
372 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
373 ENDDO
374 ENDDO
375 ENDIF
376
377 C-- Forcing term (moved to timestep.F)
378 c IF (momForcing)
379 c & CALL EXTERNAL_FORCING_V(
380 c I iMin,iMax,jMin,jMax,bi,bj,k,
381 c I myCurrentTime,myThid)
382
383 C-- Metric terms for curvilinear grid systems
384 c IF (usingSphericalPolarMTerms) THEN
385 C o Spherical polar grid metric terms
386 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
387 c DO j=jMin,jMax
388 c DO i=iMin,iMax
389 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
390 c ENDDO
391 c ENDDO
392 c ENDIF
393
394 C-- Horizontal Coriolis terms
395 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
396 CALL MOM_VI_CORIOLIS(bi,bj,K,uFld,vFld,omega3,r_hFacZ,
397 & uCf,vCf,myThid)
398 DO j=jMin,jMax
399 DO i=iMin,iMax
400 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
401 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
402 ENDDO
403 ENDDO
404 ENDIF
405
406 IF (momAdvection) THEN
407 C-- Horizontal advection of relative vorticity
408 c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
409 CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
410 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
411 DO j=jMin,jMax
412 DO i=iMin,iMax
413 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
414 ENDDO
415 ENDDO
416 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
417 CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
418 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
419 DO j=jMin,jMax
420 DO i=iMin,iMax
421 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
422 ENDDO
423 ENDDO
424
425 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
426 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
427 DO j=jMin,jMax
428 DO i=iMin,iMax
429 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
430 ENDDO
431 ENDDO
432 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
433 DO j=jMin,jMax
434 DO i=iMin,iMax
435 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
436 ENDDO
437 ENDDO
438
439 C-- Bernoulli term
440 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
441 DO j=jMin,jMax
442 DO i=iMin,iMax
443 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
444 ENDDO
445 ENDDO
446 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
447 DO j=jMin,jMax
448 DO i=iMin,iMax
449 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
450 ENDDO
451 ENDDO
452 C-- end if momAdvection
453 ENDIF
454
455 C-- Set du/dt & dv/dt on boundaries to zero
456 DO j=jMin,jMax
457 DO i=iMin,iMax
458 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
459 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
460 ENDDO
461 ENDDO
462
463
464 IF (
465 & DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,
466 & myCurrentTime-deltaTClock)
467 & ) THEN
468 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
469 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
470 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
471 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
472 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
473 CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
474 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
475 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
476 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
477 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
478 ENDIF
479
480 RETURN
481 END

  ViewVC Help
Powered by ViewVC 1.1.22