C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.23 2004/09/24 17:02:34 jmc Exp $ C $Name: $ #include "MOM_VECINV_OPTIONS.h" SUBROUTINE MOM_VECINV( I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown, I dPhiHydX,dPhiHydY,KappaRU,KappaRV, U fVerU, fVerV, I myTime, myIter, myThid) C /==========================================================\ C | S/R MOM_VECINV | C | o Form the right hand-side of the momentum equation. | C |==========================================================| C | Terms are evaluated one layer at a time working from | C | the bottom to the top. The vertically integrated | C | barotropic flow tendency term is evluated by summing the | C | tendencies. | C | Notes: | C | We have not sorted out an entirely satisfactory formula | C | for the diffusion equation bc with lopping. The present | C | form produces a diffusive flux that does not scale with | C | open-area. Need to do something to solidfy this and to | C | deal "properly" with thin walls. | C \==========================================================/ IMPLICIT NONE C == Global variables == #include "SIZE.h" #include "DYNVARS.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #ifdef ALLOW_TIMEAVE #include "TIMEAVE_STATV.h" #endif C == Routine arguments == C fVerU - Flux of momentum in the vertical C fVerV direction out of the upper face of a cell K C ( flux into the cell above ). C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation C results will be set. C kUp, kDown - Index for upper and lower layers. C myThid - Instance number for this innvocation of CALC_MOM_RHS _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) INTEGER kUp,kDown _RL myTime INTEGER myIter INTEGER myThid INTEGER bi,bj,iMin,iMax,jMin,jMax #ifdef ALLOW_MOM_VECINV C == Functions == LOGICAL DIFFERENT_MULTIPLE EXTERNAL DIFFERENT_MULTIPLE C == Local variables == _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) C I,J,K - Loop counters INTEGER i,j,k C rVelMaskOverride - Factor for imposing special surface boundary conditions C ( set according to free-surface condition ). C hFacROpen - Lopped cell factos used tohold fraction of open C hFacRClosed and closed cell wall. _RL rVelMaskOverride C xxxFac - On-off tracer parameters used for switching terms off. _RL uDudxFac _RL AhDudxFac _RL A4DuxxdxFac _RL vDudyFac _RL AhDudyFac _RL A4DuyydyFac _RL rVelDudrFac _RL ArDudrFac _RL fuFac _RL phxFac _RL mtFacU _RL uDvdxFac _RL AhDvdxFac _RL A4DvxxdxFac _RL vDvdyFac _RL AhDvdyFac _RL A4DvyydyFac _RL rVelDvdrFac _RL ArDvdrFac _RL fvFac _RL phyFac _RL vForcFac _RL mtFacV _RL wVelBottomOverride LOGICAL bottomDragTerms LOGICAL writeDiag _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) #ifdef ALLOW_AUTODIFF_TAMC C-- only the kDown part of fverU/V is set in this subroutine C-- the kUp is still required C-- In the case of mom_fluxform Kup is set as well C-- (at least in part) fVerU(1,1,kUp) = fVerU(1,1,kUp) fVerV(1,1,kUp) = fVerV(1,1,kUp) #endif rVelMaskOverride=1. IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac wVelBottomOverride=1. IF (k.EQ.Nr) wVelBottomOverride=0. writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime, & myTime-deltaTClock) C Initialise intermediate terms DO J=1-OLy,sNy+OLy DO I=1-OLx,sNx+OLx aF(i,j) = 0. vF(i,j) = 0. vrF(i,j) = 0. uCf(i,j) = 0. vCf(i,j) = 0. mT(i,j) = 0. pF(i,j) = 0. del2u(i,j) = 0. del2v(i,j) = 0. dStar(i,j) = 0. zStar(i,j) = 0. uDiss(i,j) = 0. vDiss(i,j) = 0. vort3(i,j) = 0. omega3(i,j) = 0. ke(i,j) = 0. #ifdef ALLOW_AUTODIFF_TAMC strain(i,j) = 0. _d 0 tension(i,j) = 0. _d 0 #endif ENDDO ENDDO C-- Term by term tracer parmeters C o U momentum equation uDudxFac = afFacMom*1. AhDudxFac = vfFacMom*1. A4DuxxdxFac = vfFacMom*1. vDudyFac = afFacMom*1. AhDudyFac = vfFacMom*1. A4DuyydyFac = vfFacMom*1. rVelDudrFac = afFacMom*1. ArDudrFac = vfFacMom*1. mTFacU = mtFacMom*1. fuFac = cfFacMom*1. phxFac = pfFacMom*1. C o V momentum equation uDvdxFac = afFacMom*1. AhDvdxFac = vfFacMom*1. A4DvxxdxFac = vfFacMom*1. vDvdyFac = afFacMom*1. AhDvdyFac = vfFacMom*1. A4DvyydyFac = vfFacMom*1. rVelDvdrFac = afFacMom*1. ArDvdrFac = vfFacMom*1. mTFacV = mtFacMom*1. fvFac = cfFacMom*1. phyFac = pfFacMom*1. vForcFac = foFacMom*1. IF ( no_slip_bottom & .OR. bottomDragQuadratic.NE.0. & .OR. bottomDragLinear.NE.0.) THEN bottomDragTerms=.TRUE. ELSE bottomDragTerms=.FALSE. ENDIF C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP IF (staggerTimeStep) THEN phxFac = 0. phyFac = 0. ENDIF C-- Calculate open water fraction at vorticity points CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid) C---- Calculate common quantities used in both U and V equations C Calculate tracer cell face open areas DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xA(i,j) = _dyG(i,j,bi,bj) & *drF(k)*_hFacW(i,j,k,bi,bj) yA(i,j) = _dxG(i,j,bi,bj) & *drF(k)*_hFacS(i,j,k,bi,bj) ENDDO ENDDO C Make local copies of horizontal flow field DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx uFld(i,j) = uVel(i,j,k,bi,bj) vFld(i,j) = vVel(i,j,k,bi,bj) ENDDO ENDDO C note (jmc) : Dissipation and Vort3 advection do not necesary C use the same maskZ (and hFacZ) => needs 2 call(s) c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid) CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid) CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid) CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid) IF (useAbsVorticity) & CALL MOM_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid) IF (momViscosity) THEN C Calculate del^2 u and del^2 v for bi-harmonic term IF (viscA4.NE.0. & .OR. viscA4Grid.NE.0. & .OR. viscC4leith.NE.0. & ) THEN CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ, O del2u,del2v, & myThid) CALL MOM_CALC_HDIV(bi,bj,k,2,del2u,del2v,dStar,myThid) CALL MOM_CALC_RELVORT3( & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid) ENDIF C Calculate dissipation terms for U and V equations C in terms of vorticity and divergence IF (viscAh.NE.0. .OR. viscA4.NE.0. & .OR. viscAhGrid.NE.0. .OR. viscA4Grid.NE.0. & .OR. viscC2leith.NE.0. .OR. viscC4leith.NE.0. & ) THEN CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar, O uDiss,vDiss, & myThid) ENDIF C or in terms of tension and strain IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld, O tension, I myThid) CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ, O strain, I myThid) CALL MOM_HDISSIP(bi,bj,k, I tension,strain,hFacZ,viscAtension,viscAstrain, O uDiss,vDiss, I myThid) ENDIF ENDIF C- Return to standard hfacZ (min-4) and mask vort3 accordingly: c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid) C---- Zonal momentum equation starts here C-- Vertical flux (fVer is at upper face of "u" cell) C Eddy component of vertical flux (interior component only) -> vrF IF (momViscosity.AND..NOT.implicitViscosity) & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid) C Combine fluxes DO j=jMin,jMax DO i=iMin,iMax fVerU(i,j,kDown) = ArDudrFac*vrF(i,j) ENDDO ENDDO C-- Tendency is minus divergence of the fluxes + coriolis + pressure term DO j=2-Oly,sNy+Oly-1 DO i=2-Olx,sNx+Olx-1 gU(i,j,k,bi,bj) = uDiss(i,j) & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) & *recip_rAw(i,j,bi,bj) & *( & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac & ) & - phxFac*dPhiHydX(i,j) ENDDO ENDDO C-- No-slip and drag BCs appear as body forces in cell abutting topography IF (momViscosity.AND.no_slip_sides) THEN C- No-slip BCs impose a drag at walls... CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) ENDDO ENDDO ENDIF C- No-slip BCs impose a drag at bottom IF (momViscosity.AND.bottomDragTerms) THEN CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) ENDDO ENDDO ENDIF C-- Metric terms for curvilinear grid systems c IF (usingSphericalPolarMTerms) THEN C o Spherical polar grid metric terms c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid) c DO j=jMin,jMax c DO i=iMin,iMax c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j) c ENDDO c ENDDO c ENDIF C---- Meridional momentum equation starts here C-- Vertical flux (fVer is at upper face of "v" cell) C Eddy component of vertical flux (interior component only) -> vrF IF (momViscosity.AND..NOT.implicitViscosity) & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid) C Combine fluxes -> fVerV DO j=jMin,jMax DO i=iMin,iMax fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j) ENDDO ENDDO C-- Tendency is minus divergence of the fluxes + coriolis + pressure term DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = vDiss(i,j) & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) & *recip_rAs(i,j,bi,bj) & *( & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac & ) & - phyFac*dPhiHydY(i,j) ENDDO ENDDO C-- No-slip and drag BCs appear as body forces in cell abutting topography IF (momViscosity.AND.no_slip_sides) THEN C- No-slip BCs impose a drag at walls... CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) ENDDO ENDDO ENDIF C- No-slip BCs impose a drag at bottom IF (momViscosity.AND.bottomDragTerms) THEN CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) ENDDO ENDDO ENDIF C-- Metric terms for curvilinear grid systems c IF (usingSphericalPolarMTerms) THEN C o Spherical polar grid metric terms c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid) c DO j=jMin,jMax c DO i=iMin,iMax c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j) c ENDDO c ENDDO c ENDIF C-- Horizontal Coriolis terms IF (useCoriolis .AND. .NOT.useCDscheme & .AND. .NOT. useAbsVorticity) THEN CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,hFacZ,r_hFacZ, & uCf,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO IF ( writeDiag ) THEN CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid) ENDIF ENDIF IF (momAdvection) THEN C-- Horizontal advection of relative vorticity IF (useAbsVorticity) THEN CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,hFacZ,r_hFacZ, & uCf,myThid) ELSE CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ, & uCf,myThid) ENDIF c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO IF (useAbsVorticity) THEN CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,hFacZ,r_hFacZ, & vCf,myThid) ELSE CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ, & vCf,myThid) ENDIF c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO IF ( writeDiag ) THEN CALL WRITE_LOCAL_RL('zV','I10',1,uCf,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('zU','I10',1,vCf,bi,bj,k,myIter,myThid) ENDIF #ifdef ALLOW_TIMEAVE #ifndef HRCUBE IF (taveFreq.GT.0.) THEN CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock, & Nr, k, bi, bj, myThid) CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock, & Nr, k, bi, bj, myThid) ENDIF #endif /* ndef HRCUBE */ #endif /* ALLOW_TIMEAVE */ C-- Vertical shear terms (-w*du/dr & -w*dv/dr) IF ( .NOT. momImplVertAdv ) THEN CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO ENDIF C-- Bernoulli term CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO IF ( writeDiag ) THEN CALL WRITE_LOCAL_RL('KEx','I10',1,uCf,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('KEy','I10',1,vCf,bi,bj,k,myIter,myThid) ENDIF C-- end if momAdvection ENDIF C-- Set du/dt & dv/dt on boundaries to zero DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj) gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj) ENDDO ENDDO #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB & .AND. k.EQ.4 .AND. myIter.EQ.nIter0 & .AND. nPx.EQ.1 .AND. nPy.EQ.1 & .AND. useCubedSphereExchange ) THEN CALL DEBUG_CS_CORNER_UV( ' uDiss,vDiss from MOM_VECINV', & uDiss,vDiss, k, standardMessageUnit,bi,bj,myThid ) ENDIF #endif /* ALLOW_DEBUG */ IF ( writeDiag ) THEN CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid) CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid) ENDIF #endif /* ALLOW_MOM_VECINV */ RETURN END