--- MITgcm/pkg/mom_vecinv/mom_vecinv.F 2004/10/10 06:08:49 1.26 +++ MITgcm/pkg/mom_vecinv/mom_vecinv.F 2015/01/03 23:58:53 1.76 @@ -1,17 +1,25 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.26 2004/10/10 06:08:49 edhill Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.76 2015/01/03 23:58:53 jmc Exp $ C $Name: $ #include "MOM_VECINV_OPTIONS.h" +#ifdef ALLOW_AUTODIFF +# include "AUTODIFF_OPTIONS.h" +#endif +#ifdef ALLOW_MOM_COMMON +# include "MOM_COMMON_OPTIONS.h" +#endif - SUBROUTINE MOM_VECINV( - I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown, - I dPhiHydX,dPhiHydY,KappaRU,KappaRV, - U fVerU, fVerV, - I myTime, myIter, myThid) -C /==========================================================\ + SUBROUTINE MOM_VECINV( + I bi,bj,k,iMin,iMax,jMin,jMax, + I kappaRU, kappaRV, + I fVerUkm, fVerVkm, + O fVerUkp, fVerVkp, + O guDiss, gvDiss, + I myTime, myIter, myThid ) +C *==========================================================* C | S/R MOM_VECINV | C | o Form the right hand-side of the momentum equation. | -C |==========================================================| +C *==========================================================* C | Terms are evaluated one layer at a time working from | C | the bottom to the top. The vertically integrated | C | barotropic flow tendency term is evluated by summing the | @@ -22,39 +30,59 @@ C | form produces a diffusive flux that does not scale with | C | open-area. Need to do something to solidfy this and to | C | deal "properly" with thin walls. | -C \==========================================================/ +C *==========================================================* IMPLICIT NONE C == Global variables == #include "SIZE.h" -#include "DYNVARS.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" +#include "SURFACE.h" +#include "DYNVARS.h" +#ifdef ALLOW_MOM_COMMON +# include "MOM_VISC.h" +#endif #ifdef ALLOW_TIMEAVE -#include "TIMEAVE_STATV.h" +# include "TIMEAVE_STATV.h" +#endif +#ifdef ALLOW_MNC +# include "MNC_PARAMS.h" +#endif +#ifdef ALLOW_AUTODIFF_TAMC +# include "tamc.h" +# include "tamc_keys.h" #endif C == Routine arguments == -C fVerU - Flux of momentum in the vertical -C fVerV direction out of the upper face of a cell K -C ( flux into the cell above ). -C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential -C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation -C results will be set. -C kUp, kDown - Index for upper and lower layers. -C myThid - Instance number for this innvocation of CALC_MOM_RHS - _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly) - _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly) - _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) - INTEGER kUp,kDown +C bi,bj :: current tile indices +C k :: current vertical level +C iMin,iMax,jMin,jMax :: loop ranges +C fVerU :: Flux of momentum in the vertical direction, out of the upper +C fVerV :: face of a cell K ( flux into the cell above ). +C fVerUkm :: vertical viscous flux of U, interface above (k-1/2) +C fVerVkm :: vertical viscous flux of V, interface above (k-1/2) +C fVerUkp :: vertical viscous flux of U, interface below (k+1/2) +C fVerVkp :: vertical viscous flux of V, interface below (k+1/2) + +C guDiss :: dissipation tendency (all explicit terms), u component +C gvDiss :: dissipation tendency (all explicit terms), v component +C myTime :: current time +C myIter :: current time-step number +C myThid :: my Thread Id number + INTEGER bi,bj,k + INTEGER iMin,iMax,jMin,jMax + _RL kappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) + _RL kappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) + _RL fVerUkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVerVkm(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVerUkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL fVerVkp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL myTime INTEGER myIter INTEGER myThid - INTEGER bi,bj,iMin,iMax,jMin,jMax #ifdef ALLOW_MOM_VECINV @@ -63,182 +91,155 @@ EXTERNAL DIFFERENT_MULTIPLE C == Local variables == - _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) +C strainBC :: same as strain but account for no-slip BC +C vort3BC :: same as vort3 but account for no-slip BC _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) -C I,J,K - Loop counters - INTEGER i,j,k -C rVelMaskOverride - Factor for imposing special surface boundary conditions -C ( set according to free-surface condition ). -C hFacROpen - Lopped cell factos used tohold fraction of open -C hFacRClosed and closed cell wall. - _RL rVelMaskOverride -C xxxFac - On-off tracer parameters used for switching terms off. - _RL uDudxFac - _RL AhDudxFac - _RL A4DuxxdxFac - _RL vDudyFac - _RL AhDudyFac - _RL A4DuyydyFac - _RL rVelDudrFac + _RL vrF(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL uCf(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL vCf(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RS hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RS h0FacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RS r_hFacZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL del2u (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL del2v (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL dStar (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL zStar (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL tension (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL strain (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL strainBC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL KE (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL omega3 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL vort3 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL vort3BC (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL hDiv (1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscAh_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscAh_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscA4_Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL viscA4_D(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +C i,j :: Loop counters + INTEGER i,j +C xxxFac :: On-off tracer parameters used for switching terms off. _RL ArDudrFac - _RL fuFac - _RL phxFac - _RL mtFacU - _RL uDvdxFac - _RL AhDvdxFac - _RL A4DvxxdxFac - _RL vDvdyFac - _RL AhDvdyFac - _RL A4DvyydyFac - _RL rVelDvdrFac _RL ArDvdrFac - _RL fvFac - _RL phyFac - _RL vForcFac - _RL mtFacV - _RL wVelBottomOverride + _RL sideMaskFac LOGICAL bottomDragTerms LOGICAL writeDiag - _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +#ifdef ALLOW_AUTODIFF_TAMC + INTEGER imomkey +#endif #ifdef ALLOW_MNC INTEGER offsets(9) + CHARACTER*(1) pf #endif -#ifdef ALLOW_AUTODIFF_TAMC +#ifdef ALLOW_AUTODIFF C-- only the kDown part of fverU/V is set in this subroutine C-- the kUp is still required C-- In the case of mom_fluxform Kup is set as well C-- (at least in part) - fVerU(1,1,kUp) = fVerU(1,1,kUp) - fVerV(1,1,kUp) = fVerV(1,1,kUp) + fVerUkm(1,1) = fVerUkm(1,1) + fVerVkm(1,1) = fVerVkm(1,1) #endif - rVelMaskOverride=1. - IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac - wVelBottomOverride=1. - IF (k.EQ.Nr) wVelBottomOverride=0. - writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime, - & myTime-deltaTClock) +#ifdef ALLOW_AUTODIFF_TAMC + act0 = k - 1 + max0 = Nr + act1 = bi - myBxLo(myThid) + max1 = myBxHi(myThid) - myBxLo(myThid) + 1 + act2 = bj - myByLo(myThid) + max2 = myByHi(myThid) - myByLo(myThid) + 1 + act3 = myThid - 1 + max3 = nTx*nTy + act4 = ikey_dynamics - 1 + imomkey = (act0 + 1) + & + act1*max0 + & + act2*max0*max1 + & + act3*max0*max1*max2 + & + act4*max0*max1*max2*max3 +#endif /* ALLOW_AUTODIFF_TAMC */ + + writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime, deltaTClock) #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc .AND. writeDiag) THEN + IF ( writeBinaryPrec .EQ. precFloat64 ) THEN + pf(1:1) = 'D' + ELSE + pf(1:1) = 'R' + ENDIF IF ((bi .EQ. 1).AND.(bj .EQ. 1).AND.(k .EQ. 1)) THEN CALL MNC_CW_SET_UDIM('mom_vi', -1, myThid) - CALL MNC_CW_I_W_S('I','mom_vi',0,0,'iter',myIter,myThid) + CALL MNC_CW_RL_W_S('D','mom_vi',0,0,'T',myTime,myThid) CALL MNC_CW_SET_UDIM('mom_vi', 0, myThid) + CALL MNC_CW_I_W_S('I','mom_vi',0,0,'iter',myIter,myThid) ENDIF DO i = 1,9 offsets(i) = 0 ENDDO offsets(3) = k -C write(*,*) 'offsets = ',(offsets(i),i=1,9) +c write(*,*) 'offsets = ',(offsets(i),i=1,9) ENDIF #endif /* ALLOW_MNC */ -C Initialise intermediate terms - DO J=1-OLy,sNy+OLy - DO I=1-OLx,sNx+OLx - aF(i,j) = 0. - vF(i,j) = 0. - vrF(i,j) = 0. +C-- Initialise intermediate terms + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + vF(i,j) = 0. + vrF(i,j) = 0. uCf(i,j) = 0. vCf(i,j) = 0. - mT(i,j) = 0. - pF(i,j) = 0. del2u(i,j) = 0. del2v(i,j) = 0. dStar(i,j) = 0. zStar(i,j) = 0. - uDiss(i,j) = 0. - vDiss(i,j) = 0. + guDiss(i,j)= 0. + gvDiss(i,j)= 0. vort3(i,j) = 0. - omega3(i,j) = 0. - ke(i,j) = 0. -#ifdef ALLOW_AUTODIFF_TAMC + omega3(i,j)= 0. + KE(i,j) = 0. +C- need to initialise hDiv for MOM_VI_DEL2UV(call FILL_CS_CORNER_TR_RL) + hDiv(i,j) = 0. +c viscAh_Z(i,j) = 0. +c viscAh_D(i,j) = 0. +c viscA4_Z(i,j) = 0. +c viscA4_D(i,j) = 0. strain(i,j) = 0. _d 0 + strainBC(i,j)= 0. _d 0 tension(i,j) = 0. _d 0 +#ifdef ALLOW_AUTODIFF + hFacZ(i,j) = 0. _d 0 #endif ENDDO ENDDO C-- Term by term tracer parmeters C o U momentum equation - uDudxFac = afFacMom*1. - AhDudxFac = vfFacMom*1. - A4DuxxdxFac = vfFacMom*1. - vDudyFac = afFacMom*1. - AhDudyFac = vfFacMom*1. - A4DuyydyFac = vfFacMom*1. - rVelDudrFac = afFacMom*1. ArDudrFac = vfFacMom*1. - mTFacU = mtFacMom*1. - fuFac = cfFacMom*1. - phxFac = pfFacMom*1. C o V momentum equation - uDvdxFac = afFacMom*1. - AhDvdxFac = vfFacMom*1. - A4DvxxdxFac = vfFacMom*1. - vDvdyFac = afFacMom*1. - AhDvdyFac = vfFacMom*1. - A4DvyydyFac = vfFacMom*1. - rVelDvdrFac = afFacMom*1. ArDvdrFac = vfFacMom*1. - mTFacV = mtFacMom*1. - fvFac = cfFacMom*1. - phyFac = pfFacMom*1. - vForcFac = foFacMom*1. + +C note: using standard stencil (no mask) results in under-estimating +C vorticity at a no-slip boundary by a factor of 2 = sideDragFactor + IF ( no_slip_sides ) THEN + sideMaskFac = sideDragFactor + ELSE + sideMaskFac = 0. _d 0 + ENDIF IF ( no_slip_bottom - & .OR. bottomDragQuadratic.NE.0. + & .OR. selectBotDragQuadr.GE.0 & .OR. bottomDragLinear.NE.0.) THEN bottomDragTerms=.TRUE. ELSE bottomDragTerms=.FALSE. ENDIF -C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP - IF (staggerTimeStep) THEN - phxFac = 0. - phyFac = 0. - ENDIF - C-- Calculate open water fraction at vorticity points CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid) -C---- Calculate common quantities used in both U and V equations -C Calculate tracer cell face open areas - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - xA(i,j) = _dyG(i,j,bi,bj) - & *drF(k)*_hFacW(i,j,k,bi,bj) - yA(i,j) = _dxG(i,j,bi,bj) - & *drF(k)*_hFacS(i,j,k,bi,bj) - ENDDO - ENDDO - C Make local copies of horizontal flow field DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx @@ -251,184 +252,270 @@ C use the same maskZ (and hFacZ) => needs 2 call(s) c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid) - CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid) - - CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid) + CALL MOM_CALC_KE(bi,bj,k,selectKEscheme,uFld,vFld,KE,myThid) CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid) - IF (useAbsVorticity) - & CALL MOM_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid) +C- mask vort3 and account for no-slip / free-slip BC in vort3BC: + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + vort3BC(i,j) = vort3(i,j) + IF ( hFacZ(i,j).EQ.zeroRS ) THEN + vort3BC(i,j) = sideMaskFac*vort3BC(i,j) + vort3(i,j) = 0. + ENDIF + ENDDO + ENDDO IF (momViscosity) THEN +C-- For viscous term, compute horizontal divergence, tension & strain +C and mask relative vorticity (free-slip case): + + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + h0FacZ(i,j) = hFacZ(i,j) + ENDDO + ENDDO +#ifdef NONLIN_FRSURF + IF ( no_slip_sides .AND. nonlinFreeSurf.GT.0 ) THEN + DO j=2-OLy,sNy+OLy + DO i=2-OLx,sNx+OLx + h0FacZ(i,j) = MIN( + & MIN( h0FacW(i,j,k,bi,bj), h0FacW(i,j-1,k,bi,bj) ), + & MIN( h0FacS(i,j,k,bi,bj), h0FacS(i-1,j,k,bi,bj) ) ) + ENDDO + ENDDO + ENDIF +#endif /* NONLIN_FRSURF */ + + CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid) + + IF ( useVariableVisc .OR. useStrainTensionVisc ) THEN + CALL MOM_CALC_TENSION( bi,bj,k,uFld,vFld,tension,myThid ) + CALL MOM_CALC_STRAIN( bi,bj,k,uFld,vFld,hFacZ,strain,myThid ) +C- mask strain and account for no-slip / free-slip BC in strainBC: + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + strainBC(i,j) = strain(i,j) + IF ( hFacZ(i,j).EQ.zeroRS ) THEN + strainBC(i,j) = sideMaskFac*strainBC(i,j) + strain(i,j) = 0. + ENDIF + ENDDO + ENDDO + ENDIF + +C-- Calculate Lateral Viscosities + DO j=1-OLy,sNy+OLy + DO i=1-OLx,sNx+OLx + viscAh_D(i,j) = viscAhD + viscAh_Z(i,j) = viscAhZ + viscA4_D(i,j) = viscA4D + viscA4_Z(i,j) = viscA4Z + ENDDO + ENDDO + IF ( useVariableVisc ) THEN +C- uses vort3BC & strainBC which account for no-slip / free-slip BC + CALL MOM_CALC_VISC( bi, bj, k, + O viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, + I hDiv, vort3BC, tension, strainBC, KE, hfacZ, + I myThid ) + ENDIF + C Calculate del^2 u and del^2 v for bi-harmonic term - IF (viscA4.NE.0. - & .OR. viscA4Grid.NE.0. - & .OR. viscC4leith.NE.0. - & ) THEN + IF (useBiharmonicVisc) THEN CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ, O del2u,del2v, - & myThid) + I myThid) CALL MOM_CALC_HDIV(bi,bj,k,2,del2u,del2v,dStar,myThid) - CALL MOM_CALC_RELVORT3( - & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid) + CALL MOM_CALC_RELVORT3(bi,bj,k, + & del2u,del2v,hFacZ,zStar,myThid) ENDIF -C Calculate dissipation terms for U and V equations -C in terms of vorticity and divergence - IF (viscAh.NE.0. .OR. viscA4.NE.0. - & .OR. viscAhGrid.NE.0. .OR. viscA4Grid.NE.0. - & .OR. viscC2leith.NE.0. .OR. viscC4leith.NE.0. - & ) THEN - CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar, - O uDiss,vDiss, - & myThid) - ENDIF -C or in terms of tension and strain - IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN - CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld, - O tension, - I myThid) - CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ, - O strain, - I myThid) - CALL MOM_HDISSIP(bi,bj,k, - I tension,strain,hFacZ,viscAtension,viscAstrain, - O uDiss,vDiss, - I myThid) - ENDIF - ENDIF -C- Return to standard hfacZ (min-4) and mask vort3 accordingly: -c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid) +C--- Calculate dissipation terms for U and V equations + +C- in terms of tension and strain + IF (useStrainTensionVisc) THEN +C use masked strain as if free-slip since side-drag is computed separately + CALL MOM_HDISSIP( bi, bj, k, + I tension, strain, hFacZ, + I viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, + I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, + O guDiss, gvDiss, + I myThid ) + ELSE +C- in terms of vorticity and divergence + CALL MOM_VI_HDISSIP( bi, bj, k, + I hDiv, vort3, dStar, zStar, hFacZ, + I viscAh_Z, viscAh_D, viscA4_Z, viscA4_D, + I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, + O guDiss, gvDiss, + I myThid ) + ENDIF -C---- Zonal momentum equation starts here +C--- Other dissipation terms in Zonal momentum equation C-- Vertical flux (fVer is at upper face of "u" cell) - C Eddy component of vertical flux (interior component only) -> vrF - IF (momViscosity.AND..NOT.implicitViscosity) - & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid) - + IF ( .NOT.implicitViscosity ) THEN + CALL MOM_U_RVISCFLUX(bi,bj,k+1,uVel,kappaRU,vrF,myThid) C Combine fluxes - DO j=jMin,jMax - DO i=iMin,iMax - fVerU(i,j,kDown) = ArDudrFac*vrF(i,j) + DO j=jMin,jMax + DO i=iMin,iMax + fVerUkp(i,j) = ArDudrFac*vrF(i,j) + ENDDO ENDDO - ENDDO - -C-- Tendency is minus divergence of the fluxes + coriolis + pressure term - DO j=2-Oly,sNy+Oly-1 - DO i=2-Olx,sNx+Olx-1 - gU(i,j,k,bi,bj) = uDiss(i,j) +C-- Tendency is minus divergence of the fluxes + DO j=jMin,jMax + DO i=iMin,iMax + guDiss(i,j) = guDiss(i,j) & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) & *recip_rAw(i,j,bi,bj) - & *( - & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac - & ) - & - phxFac*dPhiHydX(i,j) + & *( fVerUkp(i,j) - fVerUkm(i,j) )*rkSign + ENDDO ENDDO - ENDDO + ENDIF -C-- No-slip and drag BCs appear as body forces in cell abutting topography - IF (momViscosity.AND.no_slip_sides) THEN +C-- No-slip and drag BCs appear as body forces in cell abutting topography + IF ( no_slip_sides ) THEN C- No-slip BCs impose a drag at walls... - CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid) + CALL MOM_U_SIDEDRAG( bi, bj, k, + I uFld, del2u, h0FacZ, + I viscAh_Z, viscA4_Z, + I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, + O vF, + I myThid ) DO j=jMin,jMax DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) + guDiss(i,j) = guDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF C- No-slip BCs impose a drag at bottom - IF (momViscosity.AND.bottomDragTerms) THEN - CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) + IF ( bottomDragTerms ) THEN + CALL MOM_U_BOTTOMDRAG( bi, bj, k, + I uFld, vFld, KE, kappaRU, + O vF, + I myThid ) DO j=jMin,jMax DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) + guDiss(i,j) = guDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF +#ifdef ALLOW_SHELFICE + IF ( useShelfIce ) THEN + CALL SHELFICE_U_DRAG( bi, bj, k, + I uFld, vFld, KE, kappaRU, + O vF, + I myThid ) + DO j=jMin,jMax + DO i=iMin,iMax + guDiss(i,j) = guDiss(i,j) + vF(i,j) + ENDDO + ENDDO + ENDIF +#endif /* ALLOW_SHELFICE */ -C-- Metric terms for curvilinear grid systems -c IF (usingSphericalPolarMTerms) THEN -C o Spherical polar grid metric terms -c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid) -c DO j=jMin,jMax -c DO i=iMin,iMax -c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j) -c ENDDO -c ENDDO -c ENDIF - -C---- Meridional momentum equation starts here +C--- Other dissipation terms in Meridional momentum equation C-- Vertical flux (fVer is at upper face of "v" cell) - C Eddy component of vertical flux (interior component only) -> vrF - IF (momViscosity.AND..NOT.implicitViscosity) - & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid) - + IF ( .NOT.implicitViscosity ) THEN + CALL MOM_V_RVISCFLUX(bi,bj,k+1,vVel,kappaRV,vrF,myThid) C Combine fluxes -> fVerV - DO j=jMin,jMax - DO i=iMin,iMax - fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j) + DO j=jMin,jMax + DO i=iMin,iMax + fVerVkp(i,j) = ArDvdrFac*vrF(i,j) + ENDDO ENDDO - ENDDO - -C-- Tendency is minus divergence of the fluxes + coriolis + pressure term - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = vDiss(i,j) +C-- Tendency is minus divergence of the fluxes + DO j=jMin,jMax + DO i=iMin,iMax + gvDiss(i,j) = gvDiss(i,j) & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) - & *recip_rAs(i,j,bi,bj) - & *( - & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac - & ) - & - phyFac*dPhiHydY(i,j) + & *recip_rAs(i,j,bi,bj) + & *( fVerVkp(i,j) - fVerVkm(i,j) )*rkSign + ENDDO ENDDO - ENDDO + ENDIF -C-- No-slip and drag BCs appear as body forces in cell abutting topography - IF (momViscosity.AND.no_slip_sides) THEN +C-- No-slip and drag BCs appear as body forces in cell abutting topography + IF ( no_slip_sides ) THEN C- No-slip BCs impose a drag at walls... - CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid) + CALL MOM_V_SIDEDRAG( bi, bj, k, + I vFld, del2v, h0FacZ, + I viscAh_Z, viscA4_Z, + I useHarmonicVisc, useBiharmonicVisc, useVariableVisc, + O vF, + I myThid ) DO j=jMin,jMax DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) + gvDiss(i,j) = gvDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF + C- No-slip BCs impose a drag at bottom - IF (momViscosity.AND.bottomDragTerms) THEN - CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) + IF ( bottomDragTerms ) THEN + CALL MOM_V_BOTTOMDRAG( bi, bj, k, + I uFld, vFld, KE, kappaRV, + O vF, + I myThid ) + DO j=jMin,jMax + DO i=iMin,iMax + gvDiss(i,j) = gvDiss(i,j)+vF(i,j) + ENDDO + ENDDO + ENDIF +#ifdef ALLOW_SHELFICE + IF ( useShelfIce ) THEN + CALL SHELFICE_V_DRAG( bi, bj, k, + I uFld, vFld, KE, kappaRV, + O vF, + I myThid ) DO j=jMin,jMax DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) + gvDiss(i,j) = gvDiss(i,j) + vF(i,j) ENDDO ENDDO ENDIF +#endif /* ALLOW_SHELFICE */ -C-- Metric terms for curvilinear grid systems -c IF (usingSphericalPolarMTerms) THEN -C o Spherical polar grid metric terms -c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid) -c DO j=jMin,jMax -c DO i=iMin,iMax -c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j) -c ENDDO -c ENDDO -c ENDIF +C-- if (momViscosity) end of block. + ENDIF + +C- Return to standard hfacZ (min-4) and mask vort3 accordingly: +c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid) + +C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| + +C--- Prepare for Advection & Coriolis terms: +C- calculate absolute vorticity + IF (useAbsVorticity) + & CALL MOM_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid) C-- Horizontal Coriolis terms - IF (useCoriolis .AND. .NOT.useCDscheme - & .AND. .NOT. useAbsVorticity) THEN - CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,hFacZ,r_hFacZ, - & uCf,vCf,myThid) +c IF (useCoriolis .AND. .NOT.useCDscheme +c & .AND. .NOT. useAbsVorticity) THEN +C- jmc: change it to keep the Coriolis terms when useAbsVorticity=T & momAdvection=F + IF ( useCoriolis .AND. + & .NOT.( useCDscheme .OR. useAbsVorticity.AND.momAdvection ) + & ) THEN + IF (useAbsVorticity) THEN + CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,hFacZ,r_hFacZ, + & uCf,myThid) + CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,hFacZ,r_hFacZ, + & vCf,myThid) + ELSE + CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,hFacZ,r_hFacZ, + & uCf,vCf,myThid) + ENDIF DO j=jMin,jMax DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) + gU(i,j,k,bi,bj) = uCf(i,j) + gV(i,j,k,bi,bj) = vCf(i,j) ENDDO ENDDO IF ( writeDiag ) THEN @@ -438,38 +525,63 @@ ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fV', uCf, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'fV', uCf, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fU', vCf, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'fU', vCf, & offsets, myThid) ENDIF #endif /* ALLOW_MNC */ ENDIF +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(uCf,'Um_Cori ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(vCf,'Vm_Cori ',k,1,2,bi,bj,myThid) + ENDIF +#endif /* ALLOW_DIAGNOSTICS */ + ELSE + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = 0. _d 0 + gV(i,j,k,bi,bj) = 0. _d 0 + ENDDO + ENDDO ENDIF IF (momAdvection) THEN -C-- Horizontal advection of relative vorticity - IF (useAbsVorticity) THEN +C-- Horizontal advection of relative (or absolute) vorticity + IF ( (highOrderVorticity.OR.upwindVorticity) + & .AND.useAbsVorticity ) THEN + CALL MOM_VI_U_CORIOLIS_C4(bi,bj,k,vFld,omega3,r_hFacZ, + & uCf,myThid) + ELSEIF ( (highOrderVorticity.OR.upwindVorticity) ) THEN + CALL MOM_VI_U_CORIOLIS_C4(bi,bj,k,vFld,vort3, r_hFacZ, + & uCf,myThid) + ELSEIF ( useAbsVorticity ) THEN CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,hFacZ,r_hFacZ, & uCf,myThid) ELSE - CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ, + CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3, hFacZ,r_hFacZ, & uCf,myThid) ENDIF -c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) ENDDO ENDDO - IF (useAbsVorticity) THEN + IF ( (highOrderVorticity.OR.upwindVorticity) + & .AND.useAbsVorticity ) THEN + CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,omega3,r_hFacZ, + & vCf,myThid) + ELSEIF ( (highOrderVorticity.OR.upwindVorticity) ) THEN + CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3, r_hFacZ, + & vCf,myThid) + ELSEIF ( useAbsVorticity ) THEN CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,hFacZ,r_hFacZ, & vCf,myThid) ELSE - CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ, + CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3, hFacZ,r_hFacZ, & vCf,myThid) ENDIF -c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid) DO j=jMin,jMax DO i=iMin,iMax gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) @@ -483,24 +595,28 @@ ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'zV', uCf, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'zV', uCf, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'zU', vCf, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'zU', vCf, & offsets, myThid) ENDIF #endif /* ALLOW_MNC */ ENDIF #ifdef ALLOW_TIMEAVE -#ifndef HRCUBE IF (taveFreq.GT.0.) THEN CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock, & Nr, k, bi, bj, myThid) CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock, & Nr, k, bi, bj, myThid) ENDIF -#endif /* ndef HRCUBE */ #endif /* ALLOW_TIMEAVE */ +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(uCf,'Um_AdvZ3',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(vCf,'Vm_AdvZ3',k,1,2,bi,bj,myThid) + ENDIF +#endif /* ALLOW_DIAGNOSTICS */ C-- Vertical shear terms (-w*du/dr & -w*dv/dr) IF ( .NOT. momImplVertAdv ) THEN @@ -516,6 +632,12 @@ gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) ENDDO ENDDO +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(uCf,'Um_AdvRe',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(vCf,'Vm_AdvRe',k,1,2,bi,bj,myThid) + ENDIF +#endif /* ALLOW_DIAGNOSTICS */ ENDIF C-- Bernoulli term @@ -538,17 +660,52 @@ ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'KEx', uCf, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'KEx', uCf, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'KEy', vCf, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj, 'KEy', vCf, & offsets, myThid) - ENDIF + ENDIF #endif /* ALLOW_MNC */ ENDIF C-- end if momAdvection ENDIF +C-- 3.D Coriolis term (horizontal momentum, Eastward component: -fprime*w) + IF ( use3dCoriolis ) THEN + CALL MOM_U_CORIOLIS_NH(bi,bj,k,wVel,uCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) + ENDDO + ENDDO + IF ( usingCurvilinearGrid ) THEN +C- presently, non zero angleSinC array only supported with Curvilinear-Grid + CALL MOM_V_CORIOLIS_NH(bi,bj,k,wVel,vCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) + ENDDO + ENDDO + ENDIF + ENDIF + +C-- Non-Hydrostatic (spherical) metric terms + IF ( useNHMTerms ) THEN + CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,uCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) + ENDDO + ENDDO + CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,vCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) + ENDDO + ENDDO + ENDIF + C-- Set du/dt & dv/dt on boundaries to zero DO j=jMin,jMax DO i=iMin,iMax @@ -558,49 +715,77 @@ ENDDO #ifdef ALLOW_DEBUG - IF ( debugLevel .GE. debLevB + IF ( debugLevel .GE. debLevC & .AND. k.EQ.4 .AND. myIter.EQ.nIter0 & .AND. nPx.EQ.1 .AND. nPy.EQ.1 & .AND. useCubedSphereExchange ) THEN CALL DEBUG_CS_CORNER_UV( ' uDiss,vDiss from MOM_VECINV', - & uDiss,vDiss, k, standardMessageUnit,bi,bj,myThid ) + & guDiss,gvDiss, k, standardMessageUnit,bi,bj,myThid ) ENDIF #endif /* ALLOW_DEBUG */ IF ( writeDiag ) THEN + IF (useBiharmonicVisc) THEN + CALL WRITE_LOCAL_RL( 'del2u', 'I10', 1, del2u, + & bi,bj,k, myIter, myThid ) + CALL WRITE_LOCAL_RL( 'del2v', 'I10', 1, del2v, + & bi,bj,k, myIter, myThid ) + CALL WRITE_LOCAL_RL( 'dStar', 'I10', 1, dStar, + & bi,bj,k, myIter, myThid ) + CALL WRITE_LOCAL_RL( 'zStar', 'I10', 1, zStar, + & bi,bj,k, myIter, myThid ) + ENDIF IF (snapshot_mdsio) THEN - CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter, - & myThid) - CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('W3','I10',1,omega3, bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('Z3','I10',1,vort3BC,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('KE','I10',1,KE, bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('D', 'I10',1,hDiv, bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL( 'Ds', 'I10', 1, strainBC, + & bi,bj,k, myIter, myThid ) + CALL WRITE_LOCAL_RL('Du','I10',1,guDiss, bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('Dv','I10',1,gvDiss, bi,bj,k,myIter,myThid) ENDIF #ifdef ALLOW_MNC IF (useMNC .AND. snapshot_mnc) THEN - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Ds',strain, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'W3',omega3, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Dt',tension, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Z3',vort3BC, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Du',uDiss, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'KE',KE, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Dv',vDiss, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'D', hDiv, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Z3',vort3, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Dt',tension, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'W3',omega3, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Ds',strainBC, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'KE',KE, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Du',guDiss, & offsets, myThid) - CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'D', hdiv, + CALL MNC_CW_RL_W_OFFSET(pf,'mom_vi',bi,bj,'Dv',gvDiss, & offsets, myThid) ENDIF #endif /* ALLOW_MNC */ ENDIF - + +#ifdef ALLOW_DIAGNOSTICS + IF ( useDiagnostics ) THEN + CALL DIAGNOSTICS_FILL(vort3BC,'momVort3',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(KE, 'momKE ',k,1,2,bi,bj,myThid) + IF (momViscosity) THEN + CALL DIAGNOSTICS_FILL(hDiv, 'momHDiv ',k,1,2,bi,bj,myThid) + ENDIF + IF ( useVariableVisc .OR. useStrainTensionVisc ) THEN + CALL DIAGNOSTICS_FILL(tension, 'Tension ',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(strainBC,'Strain ',k,1,2,bi,bj,myThid) + ENDIF + CALL DIAGNOSTICS_FILL(gU(1-OLx,1-OLy,k,bi,bj), + & 'Um_Advec',k,1,2,bi,bj,myThid) + CALL DIAGNOSTICS_FILL(gV(1-OLx,1-OLy,k,bi,bj), + & 'Vm_Advec',k,1,2,bi,bj,myThid) + ENDIF +#endif /* ALLOW_DIAGNOSTICS */ + #endif /* ALLOW_MOM_VECINV */ RETURN