/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.34 - (show annotations) (download)
Thu Mar 10 02:39:56 2005 UTC (19 years, 3 months ago) by baylor
Branch: MAIN
Changes since 1.33: +3 -1 lines
Expanded Leith viscosity to follow Ahgridmin and Ahgridmax, and select between 'full' and approximate form.  Also added leith-like viscosity that is proportional to grad(div.v_h).

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.33 2004/12/18 02:18:55 edhill Exp $
2 C $Name: $
3
4 #include "MOM_VECINV_OPTIONS.h"
5
6 SUBROUTINE MOM_VECINV(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
8 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
9 U fVerU, fVerV,
10 O guDiss, gvDiss,
11 I myTime, myIter, myThid)
12 C /==========================================================\
13 C | S/R MOM_VECINV |
14 C | o Form the right hand-side of the momentum equation. |
15 C |==========================================================|
16 C | Terms are evaluated one layer at a time working from |
17 C | the bottom to the top. The vertically integrated |
18 C | barotropic flow tendency term is evluated by summing the |
19 C | tendencies. |
20 C | Notes: |
21 C | We have not sorted out an entirely satisfactory formula |
22 C | for the diffusion equation bc with lopping. The present |
23 C | form produces a diffusive flux that does not scale with |
24 C | open-area. Need to do something to solidfy this and to |
25 C | deal "properly" with thin walls. |
26 C \==========================================================/
27 IMPLICIT NONE
28
29 C == Global variables ==
30 #include "SIZE.h"
31 #include "DYNVARS.h"
32 #include "EEPARAMS.h"
33 #include "PARAMS.h"
34 #ifdef ALLOW_MNC
35 #include "MNC_PARAMS.h"
36 #endif
37 #include "GRID.h"
38 #ifdef ALLOW_TIMEAVE
39 #include "TIMEAVE_STATV.h"
40 #endif
41
42 C == Routine arguments ==
43 C fVerU :: Flux of momentum in the vertical direction, out of the upper
44 C fVerV :: face of a cell K ( flux into the cell above ).
45 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
46 C guDiss :: dissipation tendency (all explicit terms), u component
47 C gvDiss :: dissipation tendency (all explicit terms), v component
48 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
49 C results will be set.
50 C kUp, kDown - Index for upper and lower layers.
51 C myThid - Instance number for this innvocation of CALC_MOM_RHS
52 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
53 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
54 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
55 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
56 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
57 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
58 _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
59 _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
60 INTEGER kUp,kDown
61 _RL myTime
62 INTEGER myIter
63 INTEGER myThid
64 INTEGER bi,bj,iMin,iMax,jMin,jMax
65
66 #ifdef ALLOW_MOM_VECINV
67
68 C == Functions ==
69 LOGICAL DIFFERENT_MULTIPLE
70 EXTERNAL DIFFERENT_MULTIPLE
71
72 C == Local variables ==
73 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 c _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 C I,J,K - Loop counters
89 INTEGER i,j,k
90 C xxxFac - On-off tracer parameters used for switching terms off.
91 _RL ArDudrFac
92 _RL phxFac
93 c _RL mtFacU
94 _RL ArDvdrFac
95 _RL phyFac
96 c _RL mtFacV
97 LOGICAL bottomDragTerms
98 LOGICAL writeDiag
99 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
100 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
101 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
102 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
103
104 #ifdef ALLOW_MNC
105 INTEGER offsets(9)
106 #endif
107
108 #ifdef ALLOW_AUTODIFF_TAMC
109 C-- only the kDown part of fverU/V is set in this subroutine
110 C-- the kUp is still required
111 C-- In the case of mom_fluxform Kup is set as well
112 C-- (at least in part)
113 fVerU(1,1,kUp) = fVerU(1,1,kUp)
114 fVerV(1,1,kUp) = fVerV(1,1,kUp)
115 #endif
116
117 writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime,
118 & myTime-deltaTClock)
119
120 #ifdef ALLOW_MNC
121 IF (useMNC .AND. snapshot_mnc .AND. writeDiag) THEN
122 IF ((bi .EQ. 1).AND.(bj .EQ. 1).AND.(k .EQ. 1)) THEN
123 CALL MNC_CW_SET_UDIM('mom_vi', -1, myThid)
124 CALL MNC_CW_I_W_S('I','mom_vi',0,0,'T',myIter,myThid)
125 CALL MNC_CW_SET_UDIM('mom_vi', 0, myThid)
126 ENDIF
127 DO i = 1,9
128 offsets(i) = 0
129 ENDDO
130 offsets(3) = k
131 C write(*,*) 'offsets = ',(offsets(i),i=1,9)
132 ENDIF
133 #endif /* ALLOW_MNC */
134
135 C Initialise intermediate terms
136 DO J=1-OLy,sNy+OLy
137 DO I=1-OLx,sNx+OLx
138 vF(i,j) = 0.
139 vrF(i,j) = 0.
140 uCf(i,j) = 0.
141 vCf(i,j) = 0.
142 c mT(i,j) = 0.
143 del2u(i,j) = 0.
144 del2v(i,j) = 0.
145 dStar(i,j) = 0.
146 zStar(i,j) = 0.
147 guDiss(i,j)= 0.
148 gvDiss(i,j)= 0.
149 vort3(i,j) = 0.
150 omega3(i,j)= 0.
151 ke(i,j) = 0.
152 #ifdef ALLOW_AUTODIFF_TAMC
153 strain(i,j) = 0. _d 0
154 tension(i,j) = 0. _d 0
155 #endif
156 ENDDO
157 ENDDO
158
159 C-- Term by term tracer parmeters
160 C o U momentum equation
161 ArDudrFac = vfFacMom*1.
162 c mTFacU = mtFacMom*1.
163 phxFac = pfFacMom*1.
164 C o V momentum equation
165 ArDvdrFac = vfFacMom*1.
166 c mTFacV = mtFacMom*1.
167 phyFac = pfFacMom*1.
168
169 IF ( no_slip_bottom
170 & .OR. bottomDragQuadratic.NE.0.
171 & .OR. bottomDragLinear.NE.0.) THEN
172 bottomDragTerms=.TRUE.
173 ELSE
174 bottomDragTerms=.FALSE.
175 ENDIF
176
177 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
178 IF (staggerTimeStep) THEN
179 phxFac = 0.
180 phyFac = 0.
181 ENDIF
182
183 C-- Calculate open water fraction at vorticity points
184 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
185
186 C Make local copies of horizontal flow field
187 DO j=1-OLy,sNy+OLy
188 DO i=1-OLx,sNx+OLx
189 uFld(i,j) = uVel(i,j,k,bi,bj)
190 vFld(i,j) = vVel(i,j,k,bi,bj)
191 ENDDO
192 ENDDO
193
194 C note (jmc) : Dissipation and Vort3 advection do not necesary
195 C use the same maskZ (and hFacZ) => needs 2 call(s)
196 c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
197
198 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
199
200 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
201
202 CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
203
204 IF (useAbsVorticity)
205 & CALL MOM_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
206
207 IF (momViscosity) THEN
208 C Calculate del^2 u and del^2 v for bi-harmonic term
209 IF ( (viscA4.NE.0. .AND. no_slip_sides)
210 & .OR. viscA4D.NE.0. .OR. viscA4Z.NE.0.
211 & .OR. viscA4Grid.NE.0.
212 & .OR. viscC4leith.NE.0.
213 & .OR. viscC4leithD.NE.0.
214 & ) THEN
215 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
216 O del2u,del2v,
217 & myThid)
218 CALL MOM_CALC_HDIV(bi,bj,k,2,del2u,del2v,dStar,myThid)
219 CALL MOM_CALC_RELVORT3(
220 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
221 ENDIF
222 C Calculate dissipation terms for U and V equations
223 C in terms of vorticity and divergence
224 IF ( viscAhD.NE.0. .OR. viscAhZ.NE.0.
225 & .OR. viscA4D.NE.0. .OR. viscA4Z.NE.0.
226 & .OR. viscAhGrid.NE.0. .OR. viscA4Grid.NE.0.
227 & .OR. viscC2leith.NE.0. .OR. viscC4leith.NE.0.
228 & .OR. viscC2leithD.NE.0. .OR. viscC4leithD.NE.0.
229 & ) THEN
230 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
231 O guDiss,gvDiss,
232 & myThid)
233 ENDIF
234 C or in terms of tension and strain
235 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
236 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
237 O tension,
238 I myThid)
239 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
240 O strain,
241 I myThid)
242 CALL MOM_HDISSIP(bi,bj,k,
243 I tension,strain,hFacZ,viscAtension,viscAstrain,
244 O guDiss,gvDiss,
245 I myThid)
246 ENDIF
247 ENDIF
248
249 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
250 c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
251
252 C---- Zonal momentum equation starts here
253
254 C-- Vertical flux (fVer is at upper face of "u" cell)
255
256 C Eddy component of vertical flux (interior component only) -> vrF
257 IF (momViscosity.AND..NOT.implicitViscosity) THEN
258 CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
259
260 C Combine fluxes
261 DO j=jMin,jMax
262 DO i=iMin,iMax
263 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
264 ENDDO
265 ENDDO
266
267 C-- Tendency is minus divergence of the fluxes
268 DO j=2-Oly,sNy+Oly-1
269 DO i=2-Olx,sNx+Olx-1
270 guDiss(i,j) = guDiss(i,j)
271 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
272 & *recip_rAw(i,j,bi,bj)
273 & *(
274 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
275 & )
276 ENDDO
277 ENDDO
278 ENDIF
279
280 C-- No-slip and drag BCs appear as body forces in cell abutting topography
281 IF (momViscosity.AND.no_slip_sides) THEN
282 C- No-slip BCs impose a drag at walls...
283 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
284 DO j=jMin,jMax
285 DO i=iMin,iMax
286 guDiss(i,j) = guDiss(i,j)+vF(i,j)
287 ENDDO
288 ENDDO
289 ENDIF
290
291 C- No-slip BCs impose a drag at bottom
292 IF (momViscosity.AND.bottomDragTerms) THEN
293 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
294 DO j=jMin,jMax
295 DO i=iMin,iMax
296 guDiss(i,j) = guDiss(i,j)+vF(i,j)
297 ENDDO
298 ENDDO
299 ENDIF
300
301 C-- Metric terms for curvilinear grid systems
302 c IF (usingSphericalPolarMTerms) THEN
303 C o Spherical polar grid metric terms
304 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
305 c DO j=jMin,jMax
306 c DO i=iMin,iMax
307 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
308 c ENDDO
309 c ENDDO
310 c ENDIF
311
312 C---- Meridional momentum equation starts here
313
314 C-- Vertical flux (fVer is at upper face of "v" cell)
315
316 C Eddy component of vertical flux (interior component only) -> vrF
317 IF (momViscosity.AND..NOT.implicitViscosity) THEN
318 CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
319
320 C Combine fluxes -> fVerV
321 DO j=jMin,jMax
322 DO i=iMin,iMax
323 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
324 ENDDO
325 ENDDO
326
327 C-- Tendency is minus divergence of the fluxes
328 DO j=jMin,jMax
329 DO i=iMin,iMax
330 gvDiss(i,j) = gvDiss(i,j)
331 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
332 & *recip_rAs(i,j,bi,bj)
333 & *(
334 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
335 & )
336 ENDDO
337 ENDDO
338 ENDIF
339
340 C-- No-slip and drag BCs appear as body forces in cell abutting topography
341 IF (momViscosity.AND.no_slip_sides) THEN
342 C- No-slip BCs impose a drag at walls...
343 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
344 DO j=jMin,jMax
345 DO i=iMin,iMax
346 gvDiss(i,j) = gvDiss(i,j)+vF(i,j)
347 ENDDO
348 ENDDO
349 ENDIF
350 C- No-slip BCs impose a drag at bottom
351 IF (momViscosity.AND.bottomDragTerms) THEN
352 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
353 DO j=jMin,jMax
354 DO i=iMin,iMax
355 gvDiss(i,j) = gvDiss(i,j)+vF(i,j)
356 ENDDO
357 ENDDO
358 ENDIF
359
360 C-- Metric terms for curvilinear grid systems
361 c IF (usingSphericalPolarMTerms) THEN
362 C o Spherical polar grid metric terms
363 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
364 c DO j=jMin,jMax
365 c DO i=iMin,iMax
366 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
367 c ENDDO
368 c ENDDO
369 c ENDIF
370
371 C-- Horizontal Coriolis terms
372 IF (useCoriolis .AND. .NOT.useCDscheme
373 & .AND. .NOT. useAbsVorticity) THEN
374 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,hFacZ,r_hFacZ,
375 & uCf,vCf,myThid)
376 DO j=jMin,jMax
377 DO i=iMin,iMax
378 gU(i,j,k,bi,bj) = uCf(i,j) - phxFac*dPhiHydX(i,j)
379 gV(i,j,k,bi,bj) = vCf(i,j) - phyFac*dPhiHydY(i,j)
380 ENDDO
381 ENDDO
382 IF ( writeDiag ) THEN
383 IF (snapshot_mdsio) THEN
384 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
385 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
386 ENDIF
387 #ifdef ALLOW_MNC
388 IF (useMNC .AND. snapshot_mnc) THEN
389 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fV', uCf,
390 & offsets, myThid)
391 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fU', vCf,
392 & offsets, myThid)
393 ENDIF
394 #endif /* ALLOW_MNC */
395 ENDIF
396 ELSE
397 DO j=jMin,jMax
398 DO i=iMin,iMax
399 gU(i,j,k,bi,bj) = -phxFac*dPhiHydX(i,j)
400 gV(i,j,k,bi,bj) = -phyFac*dPhiHydY(i,j)
401 ENDDO
402 ENDDO
403 ENDIF
404
405 IF (momAdvection) THEN
406 C-- Horizontal advection of relative vorticity
407 IF (useAbsVorticity) THEN
408 CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,hFacZ,r_hFacZ,
409 & uCf,myThid)
410 ELSE
411 CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
412 & uCf,myThid)
413 ENDIF
414 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
415 DO j=jMin,jMax
416 DO i=iMin,iMax
417 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
418 ENDDO
419 ENDDO
420 IF (useAbsVorticity) THEN
421 CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,hFacZ,r_hFacZ,
422 & vCf,myThid)
423 ELSE
424 CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
425 & vCf,myThid)
426 ENDIF
427 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
428 DO j=jMin,jMax
429 DO i=iMin,iMax
430 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
431 ENDDO
432 ENDDO
433
434 IF ( writeDiag ) THEN
435 IF (snapshot_mdsio) THEN
436 CALL WRITE_LOCAL_RL('zV','I10',1,uCf,bi,bj,k,myIter,myThid)
437 CALL WRITE_LOCAL_RL('zU','I10',1,vCf,bi,bj,k,myIter,myThid)
438 ENDIF
439 #ifdef ALLOW_MNC
440 IF (useMNC .AND. snapshot_mnc) THEN
441 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'zV', uCf,
442 & offsets, myThid)
443 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'zU', vCf,
444 & offsets, myThid)
445 ENDIF
446 #endif /* ALLOW_MNC */
447 ENDIF
448
449 #ifdef ALLOW_TIMEAVE
450 #ifndef MINIMAL_TAVE_OUTPUT
451 IF (taveFreq.GT.0.) THEN
452 CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
453 & Nr, k, bi, bj, myThid)
454 CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
455 & Nr, k, bi, bj, myThid)
456 ENDIF
457 #endif /* ndef MINIMAL_TAVE_OUTPUT */
458 #endif /* ALLOW_TIMEAVE */
459
460 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
461 IF ( .NOT. momImplVertAdv ) THEN
462 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
463 DO j=jMin,jMax
464 DO i=iMin,iMax
465 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
466 ENDDO
467 ENDDO
468 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
469 DO j=jMin,jMax
470 DO i=iMin,iMax
471 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
472 ENDDO
473 ENDDO
474 ENDIF
475
476 C-- Bernoulli term
477 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
478 DO j=jMin,jMax
479 DO i=iMin,iMax
480 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
481 ENDDO
482 ENDDO
483 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
484 DO j=jMin,jMax
485 DO i=iMin,iMax
486 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
487 ENDDO
488 ENDDO
489 IF ( writeDiag ) THEN
490 IF (snapshot_mdsio) THEN
491 CALL WRITE_LOCAL_RL('KEx','I10',1,uCf,bi,bj,k,myIter,myThid)
492 CALL WRITE_LOCAL_RL('KEy','I10',1,vCf,bi,bj,k,myIter,myThid)
493 ENDIF
494 #ifdef ALLOW_MNC
495 IF (useMNC .AND. snapshot_mnc) THEN
496 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'KEx', uCf,
497 & offsets, myThid)
498 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'KEy', vCf,
499 & offsets, myThid)
500 ENDIF
501 #endif /* ALLOW_MNC */
502 ENDIF
503
504 C-- end if momAdvection
505 ENDIF
506
507 C-- Set du/dt & dv/dt on boundaries to zero
508 DO j=jMin,jMax
509 DO i=iMin,iMax
510 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
511 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
512 ENDDO
513 ENDDO
514
515 #ifdef ALLOW_DEBUG
516 IF ( debugLevel .GE. debLevB
517 & .AND. k.EQ.4 .AND. myIter.EQ.nIter0
518 & .AND. nPx.EQ.1 .AND. nPy.EQ.1
519 & .AND. useCubedSphereExchange ) THEN
520 CALL DEBUG_CS_CORNER_UV( ' uDiss,vDiss from MOM_VECINV',
521 & guDiss,gvDiss, k, standardMessageUnit,bi,bj,myThid )
522 ENDIF
523 #endif /* ALLOW_DEBUG */
524
525 IF ( writeDiag ) THEN
526 IF (snapshot_mdsio) THEN
527 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
528 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,
529 & myThid)
530 CALL WRITE_LOCAL_RL('Du','I10',1,guDiss,bi,bj,k,myIter,myThid)
531 CALL WRITE_LOCAL_RL('Dv','I10',1,gvDiss,bi,bj,k,myIter,myThid)
532 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
533 CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
534 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
535 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
536 ENDIF
537 #ifdef ALLOW_MNC
538 IF (useMNC .AND. snapshot_mnc) THEN
539 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Ds',strain,
540 & offsets, myThid)
541 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Dt',tension,
542 & offsets, myThid)
543 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Du',guDiss,
544 & offsets, myThid)
545 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Dv',gvDiss,
546 & offsets, myThid)
547 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Z3',vort3,
548 & offsets, myThid)
549 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'W3',omega3,
550 & offsets, myThid)
551 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'KE',KE,
552 & offsets, myThid)
553 CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'D', hdiv,
554 & offsets, myThid)
555 ENDIF
556 #endif /* ALLOW_MNC */
557 ENDIF
558
559 #endif /* ALLOW_MOM_VECINV */
560
561 RETURN
562 END

  ViewVC Help
Powered by ViewVC 1.1.22