--- MITgcm/pkg/mom_vecinv/mom_vecinv.F 2003/02/08 02:10:57 1.4 +++ MITgcm/pkg/mom_vecinv/mom_vecinv.F 2004/11/10 03:05:04 1.31 @@ -1,13 +1,14 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.4 2003/02/08 02:10:57 jmc Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.31 2004/11/10 03:05:04 jmc Exp $ C $Name: $ -#include "CPP_OPTIONS.h" +#include "MOM_VECINV_OPTIONS.h" SUBROUTINE MOM_VECINV( I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown, I dPhiHydX,dPhiHydY,KappaRU,KappaRV, U fVerU, fVerV, - I myCurrentTime, myIter, myThid) + O guDiss, gvDiss, + I myTime, myIter, myThid) C /==========================================================\ C | S/R MOM_VECINV | C | o Form the right hand-side of the momentum equation. | @@ -30,13 +31,20 @@ #include "DYNVARS.h" #include "EEPARAMS.h" #include "PARAMS.h" +#ifdef ALLOW_MNC +#include "MNC_PARAMS.h" +#endif #include "GRID.h" +#ifdef ALLOW_TIMEAVE +#include "TIMEAVE_STATV.h" +#endif C == Routine arguments == -C fVerU - Flux of momentum in the vertical -C fVerV direction out of the upper face of a cell K -C ( flux into the cell above ). +C fVerU :: Flux of momentum in the vertical direction, out of the upper +C fVerV :: face of a cell K ( flux into the cell above ). C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential +C guDiss :: dissipation tendency (all explicit terms), u component +C gvDiss :: dissipation tendency (all explicit terms), v component C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation C results will be set. C kUp, kDown - Index for upper and lower layers. @@ -47,134 +55,116 @@ _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) + _RL guDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL gvDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER kUp,kDown - _RL myCurrentTime + _RL myTime INTEGER myIter INTEGER myThid INTEGER bi,bj,iMin,iMax,jMin,jMax +#ifdef ALLOW_MOM_VECINV + C == Functions == LOGICAL DIFFERENT_MULTIPLE EXTERNAL DIFFERENT_MULTIPLE C == Local variables == - _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy) +c _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy) C I,J,K - Loop counters INTEGER i,j,k -C rVelMaskOverride - Factor for imposing special surface boundary conditions -C ( set according to free-surface condition ). -C hFacROpen - Lopped cell factos used tohold fraction of open -C hFacRClosed and closed cell wall. - _RL rVelMaskOverride C xxxFac - On-off tracer parameters used for switching terms off. - _RL uDudxFac - _RL AhDudxFac - _RL A4DuxxdxFac - _RL vDudyFac - _RL AhDudyFac - _RL A4DuyydyFac - _RL rVelDudrFac _RL ArDudrFac - _RL fuFac _RL phxFac - _RL mtFacU - _RL uDvdxFac - _RL AhDvdxFac - _RL A4DvxxdxFac - _RL vDvdyFac - _RL AhDvdyFac - _RL A4DvyydyFac - _RL rVelDvdrFac +c _RL mtFacU _RL ArDvdrFac - _RL fvFac _RL phyFac - _RL vForcFac - _RL mtFacV - INTEGER km1,kp1 - _RL wVelBottomOverride +c _RL mtFacV LOGICAL bottomDragTerms + LOGICAL writeDiag _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - km1=MAX(1,k-1) - kp1=MIN(Nr,k+1) - rVelMaskOverride=1. - IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac - wVelBottomOverride=1. - IF (k.EQ.Nr) wVelBottomOverride=0. +#ifdef ALLOW_MNC + INTEGER offsets(9) +#endif + +#ifdef ALLOW_AUTODIFF_TAMC +C-- only the kDown part of fverU/V is set in this subroutine +C-- the kUp is still required +C-- In the case of mom_fluxform Kup is set as well +C-- (at least in part) + fVerU(1,1,kUp) = fVerU(1,1,kUp) + fVerV(1,1,kUp) = fVerV(1,1,kUp) +#endif + + writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime, + & myTime-deltaTClock) + +#ifdef ALLOW_MNC + IF (useMNC .AND. snapshot_mnc .AND. writeDiag) THEN + IF ((bi .EQ. 1).AND.(bj .EQ. 1).AND.(k .EQ. 1)) THEN + CALL MNC_CW_SET_UDIM('mom_vi', -1, myThid) + CALL MNC_CW_I_W_S('I','mom_vi',0,0,'iter',myIter,myThid) + CALL MNC_CW_SET_UDIM('mom_vi', 0, myThid) + ENDIF + DO i = 1,9 + offsets(i) = 0 + ENDDO + offsets(3) = k +C write(*,*) 'offsets = ',(offsets(i),i=1,9) + ENDIF +#endif /* ALLOW_MNC */ C Initialise intermediate terms DO J=1-OLy,sNy+OLy DO I=1-OLx,sNx+OLx - aF(i,j) = 0. - vF(i,j) = 0. - vrF(i,j) = 0. + vF(i,j) = 0. + vrF(i,j) = 0. uCf(i,j) = 0. vCf(i,j) = 0. - mT(i,j) = 0. - pF(i,j) = 0. +c mT(i,j) = 0. del2u(i,j) = 0. del2v(i,j) = 0. dStar(i,j) = 0. zStar(i,j) = 0. - uDiss(i,j) = 0. - vDiss(i,j) = 0. + guDiss(i,j)= 0. + gvDiss(i,j)= 0. vort3(i,j) = 0. - omega3(i,j) = 0. - ke(i,j) = 0. + omega3(i,j)= 0. + ke(i,j) = 0. +#ifdef ALLOW_AUTODIFF_TAMC + strain(i,j) = 0. _d 0 + tension(i,j) = 0. _d 0 +#endif ENDDO ENDDO C-- Term by term tracer parmeters C o U momentum equation - uDudxFac = afFacMom*1. - AhDudxFac = vfFacMom*1. - A4DuxxdxFac = vfFacMom*1. - vDudyFac = afFacMom*1. - AhDudyFac = vfFacMom*1. - A4DuyydyFac = vfFacMom*1. - rVelDudrFac = afFacMom*1. ArDudrFac = vfFacMom*1. - mTFacU = mtFacMom*1. - fuFac = cfFacMom*1. +c mTFacU = mtFacMom*1. phxFac = pfFacMom*1. C o V momentum equation - uDvdxFac = afFacMom*1. - AhDvdxFac = vfFacMom*1. - A4DvxxdxFac = vfFacMom*1. - vDvdyFac = afFacMom*1. - AhDvdyFac = vfFacMom*1. - A4DvyydyFac = vfFacMom*1. - rVelDvdrFac = afFacMom*1. ArDvdrFac = vfFacMom*1. - mTFacV = mtFacMom*1. - fvFac = cfFacMom*1. +c mTFacV = mtFacMom*1. phyFac = pfFacMom*1. - vForcFac = foFacMom*1. IF ( no_slip_bottom & .OR. bottomDragQuadratic.NE.0. @@ -193,17 +183,6 @@ C-- Calculate open water fraction at vorticity points CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid) -C---- Calculate common quantities used in both U and V equations -C Calculate tracer cell face open areas - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - xA(i,j) = _dyG(i,j,bi,bj) - & *drF(k)*_hFacW(i,j,k,bi,bj) - yA(i,j) = _dxG(i,j,bi,bj) - & *drF(k)*_hFacS(i,j,k,bi,bj) - ENDDO - ENDDO - C Make local copies of horizontal flow field DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx @@ -212,37 +191,42 @@ ENDDO ENDDO -C Calculate velocity field "volume transports" through tracer cell faces. - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - uTrans(i,j) = uFld(i,j)*xA(i,j) - vTrans(i,j) = vFld(i,j)*yA(i,j) - ENDDO - ENDDO +C note (jmc) : Dissipation and Vort3 advection do not necesary +C use the same maskZ (and hFacZ) => needs 2 call(s) +c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid) - CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid) + CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid) - CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid) + CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid) - CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid) + CALL MOM_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid) - CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid) + IF (useAbsVorticity) + & CALL MOM_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid) IF (momViscosity) THEN C Calculate del^2 u and del^2 v for bi-harmonic term - IF (viscA4.NE.0.) THEN + IF ( (viscA4.NE.0. .AND. no_slip_sides) + & .OR. viscA4D.NE.0. .OR. viscA4Z.NE.0. + & .OR. viscA4Grid.NE.0. + & .OR. viscC4leith.NE.0. + & ) THEN CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ, O del2u,del2v, & myThid) - CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid) - CALL MOM_VI_CALC_RELVORT3( + CALL MOM_CALC_HDIV(bi,bj,k,2,del2u,del2v,dStar,myThid) + CALL MOM_CALC_RELVORT3( & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid) ENDIF C Calculate dissipation terms for U and V equations C in terms of vorticity and divergence - IF (viscAh.NE.0. .OR. viscA4.NE.0.) THEN + IF ( viscAhD.NE.0. .OR. viscAhZ.NE.0. + & .OR. viscA4D.NE.0. .OR. viscA4Z.NE.0. + & .OR. viscAhGrid.NE.0. .OR. viscA4Grid.NE.0. + & .OR. viscC2leith.NE.0. .OR. viscC4leith.NE.0. + & ) THEN CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar, - O uDiss,vDiss, + O guDiss,gvDiss, & myThid) ENDIF C or in terms of tension and strain @@ -255,38 +239,41 @@ I myThid) CALL MOM_HDISSIP(bi,bj,k, I tension,strain,hFacZ,viscAtension,viscAstrain, - O uDiss,vDiss, + O guDiss,gvDiss, I myThid) ENDIF ENDIF +C- Return to standard hfacZ (min-4) and mask vort3 accordingly: +c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid) + C---- Zonal momentum equation starts here C-- Vertical flux (fVer is at upper face of "u" cell) C Eddy component of vertical flux (interior component only) -> vrF - IF (momViscosity.AND..NOT.implicitViscosity) - & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid) + IF (momViscosity.AND..NOT.implicitViscosity) THEN + CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid) C Combine fluxes - DO j=jMin,jMax - DO i=iMin,iMax - fVerU(i,j,kDown) = ArDudrFac*vrF(i,j) + DO j=jMin,jMax + DO i=iMin,iMax + fVerU(i,j,kDown) = ArDudrFac*vrF(i,j) + ENDDO ENDDO - ENDDO -C-- Tendency is minus divergence of the fluxes + coriolis + pressure term - DO j=2-Oly,sNy+Oly-1 - DO i=2-Olx,sNx+Olx-1 - gU(i,j,k,bi,bj) = uDiss(i,j) +C-- Tendency is minus divergence of the fluxes + DO j=2-Oly,sNy+Oly-1 + DO i=2-Olx,sNx+Olx-1 + guDiss(i,j) = guDiss(i,j) & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k) & *recip_rAw(i,j,bi,bj) & *( & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac & ) - & - phxFac*dPhiHydX(i,j) + ENDDO ENDDO - ENDDO + ENDIF C-- No-slip and drag BCs appear as body forces in cell abutting topography IF (momViscosity.AND.no_slip_sides) THEN @@ -294,26 +281,21 @@ CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) + guDiss(i,j) = guDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF + C- No-slip BCs impose a drag at bottom IF (momViscosity.AND.bottomDragTerms) THEN CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j) + guDiss(i,j) = guDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF -C-- Forcing term - IF (momForcing) - & CALL EXTERNAL_FORCING_U( - I iMin,iMax,jMin,jMax,bi,bj,k, - I myCurrentTime,myThid) - C-- Metric terms for curvilinear grid systems c IF (usingSphericalPolarMTerms) THEN C o Spherical polar grid metric terms @@ -325,41 +307,33 @@ c ENDDO c ENDIF -C-- Set du/dt on boundaries to zero - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj) - ENDDO - ENDDO - - C---- Meridional momentum equation starts here C-- Vertical flux (fVer is at upper face of "v" cell) C Eddy component of vertical flux (interior component only) -> vrF - IF (momViscosity.AND..NOT.implicitViscosity) - & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid) + IF (momViscosity.AND..NOT.implicitViscosity) THEN + CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid) C Combine fluxes -> fVerV - DO j=jMin,jMax - DO i=iMin,iMax - fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j) + DO j=jMin,jMax + DO i=iMin,iMax + fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j) + ENDDO ENDDO - ENDDO -C-- Tendency is minus divergence of the fluxes + coriolis + pressure term - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = vDiss(i,j) +C-- Tendency is minus divergence of the fluxes + DO j=jMin,jMax + DO i=iMin,iMax + gvDiss(i,j) = gvDiss(i,j) & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k) & *recip_rAs(i,j,bi,bj) & *( & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac & ) - & - phyFac*dPhiHydY(i,j) + ENDDO ENDDO - ENDDO + ENDIF C-- No-slip and drag BCs appear as body forces in cell abutting topography IF (momViscosity.AND.no_slip_sides) THEN @@ -367,7 +341,7 @@ CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) + gvDiss(i,j) = gvDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF @@ -376,17 +350,11 @@ CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid) DO j=jMin,jMax DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j) + gvDiss(i,j) = gvDiss(i,j)+vF(i,j) ENDDO ENDDO ENDIF -C-- Forcing term - IF (momForcing) - & CALL EXTERNAL_FORCING_V( - I iMin,iMax,jMin,jMax,bi,bj,k, - I myCurrentTime,myThid) - C-- Metric terms for curvilinear grid systems c IF (usingSphericalPolarMTerms) THEN C o Spherical polar grid metric terms @@ -398,92 +366,195 @@ c ENDDO c ENDIF -C-- Set dv/dt on boundaries to zero - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj) - ENDDO - ENDDO - C-- Horizontal Coriolis terms - CALL MOM_VI_CORIOLIS(bi,bj,K,uFld,vFld,omega3,r_hFacZ, - & uCf,vCf,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j)) - & *_maskW(i,j,k,bi,bj) - gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j)) - & *_maskS(i,j,k,bi,bj) - ENDDO - ENDDO -c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid) - CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid) -c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j)) - & *_maskW(i,j,k,bi,bj) + IF (useCoriolis .AND. .NOT.useCDscheme + & .AND. .NOT. useAbsVorticity) THEN + CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,hFacZ,r_hFacZ, + & uCf,vCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = uCf(i,j) - phxFac*dPhiHydX(i,j) + gV(i,j,k,bi,bj) = vCf(i,j) - phyFac*dPhiHydY(i,j) + ENDDO ENDDO - ENDDO -c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid) - CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid) -c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j)) - & *_maskS(i,j,k,bi,bj) + IF ( writeDiag ) THEN + IF (snapshot_mdsio) THEN + CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid) + ENDIF +#ifdef ALLOW_MNC + IF (useMNC .AND. snapshot_mnc) THEN + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fV', uCf, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'fU', vCf, + & offsets, myThid) + ENDIF +#endif /* ALLOW_MNC */ + ENDIF + ELSE + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = -phxFac*dPhiHydX(i,j) + gV(i,j,k,bi,bj) = -phyFac*dPhiHydY(i,j) + ENDDO ENDDO - ENDDO + ENDIF IF (momAdvection) THEN -C-- Vertical shear terms (Coriolis) - CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j)) - & *_maskW(i,j,k,bi,bj) +C-- Horizontal advection of relative vorticity + IF (useAbsVorticity) THEN + CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,hFacZ,r_hFacZ, + & uCf,myThid) + ELSE + CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ, + & uCf,myThid) + ENDIF +c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) + ENDDO ENDDO - ENDDO - CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j)) - & *_maskS(i,j,k,bi,bj) + IF (useAbsVorticity) THEN + CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,hFacZ,r_hFacZ, + & vCf,myThid) + ELSE + CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ, + & vCf,myThid) + ENDIF +c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) + ENDDO ENDDO - ENDDO + + IF ( writeDiag ) THEN + IF (snapshot_mdsio) THEN + CALL WRITE_LOCAL_RL('zV','I10',1,uCf,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('zU','I10',1,vCf,bi,bj,k,myIter,myThid) + ENDIF +#ifdef ALLOW_MNC + IF (useMNC .AND. snapshot_mnc) THEN + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'zV', uCf, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'zU', vCf, + & offsets, myThid) + ENDIF +#endif /* ALLOW_MNC */ + ENDIF + +#ifdef ALLOW_TIMEAVE +#ifndef HRCUBE + IF (taveFreq.GT.0.) THEN + CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock, + & Nr, k, bi, bj, myThid) + CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock, + & Nr, k, bi, bj, myThid) + ENDIF +#endif /* ndef HRCUBE */ +#endif /* ALLOW_TIMEAVE */ + +C-- Vertical shear terms (-w*du/dr & -w*dv/dr) + IF ( .NOT. momImplVertAdv ) THEN + CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) + ENDDO + ENDDO + CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) + ENDDO + ENDDO + ENDIF C-- Bernoulli term - CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid) - DO j=jMin,jMax - DO i=iMin,iMax - gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j)) - & *_maskW(i,j,k,bi,bj) + CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j) + ENDDO ENDDO - ENDDO - CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid) + CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid) + DO j=jMin,jMax + DO i=iMin,iMax + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j) + ENDDO + ENDDO + IF ( writeDiag ) THEN + IF (snapshot_mdsio) THEN + CALL WRITE_LOCAL_RL('KEx','I10',1,uCf,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('KEy','I10',1,vCf,bi,bj,k,myIter,myThid) + ENDIF +#ifdef ALLOW_MNC + IF (useMNC .AND. snapshot_mnc) THEN + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'KEx', uCf, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj, 'KEy', vCf, + & offsets, myThid) + ENDIF +#endif /* ALLOW_MNC */ + ENDIF + +C-- end if momAdvection + ENDIF + +C-- Set du/dt & dv/dt on boundaries to zero DO j=jMin,jMax DO i=iMin,iMax - gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j)) - & *_maskS(i,j,k,bi,bj) + gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj) + gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj) ENDDO ENDDO + +#ifdef ALLOW_DEBUG + IF ( debugLevel .GE. debLevB + & .AND. k.EQ.4 .AND. myIter.EQ.nIter0 + & .AND. nPx.EQ.1 .AND. nPy.EQ.1 + & .AND. useCubedSphereExchange ) THEN + CALL DEBUG_CS_CORNER_UV( ' uDiss,vDiss from MOM_VECINV', + & guDiss,gvDiss, k, standardMessageUnit,bi,bj,myThid ) ENDIF +#endif /* ALLOW_DEBUG */ - IF ( - & DIFFERENT_MULTIPLE(diagFreq,myCurrentTime, - & myCurrentTime-deltaTClock) - & ) THEN - CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid) - CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid) + IF ( writeDiag ) THEN + IF (snapshot_mdsio) THEN + CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter, + & myThid) + CALL WRITE_LOCAL_RL('Du','I10',1,guDiss,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('Dv','I10',1,gvDiss,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid) + CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid) + ENDIF +#ifdef ALLOW_MNC + IF (useMNC .AND. snapshot_mnc) THEN + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Ds',strain, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Dt',tension, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Du',guDiss, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Dv',gvDiss, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'Z3',vort3, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'W3',omega3, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'KE',KE, + & offsets, myThid) + CALL MNC_CW_RL_W_OFFSET('D','mom_vi',bi,bj,'D', hdiv, + & offsets, myThid) + ENDIF +#endif /* ALLOW_MNC */ ENDIF + +#endif /* ALLOW_MOM_VECINV */ RETURN END