/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.17 - (show annotations) (download)
Mon May 24 18:41:05 2004 UTC (20 years ago) by adcroft
Branch: MAIN
Changes since 1.16: +3 -3 lines
Renamed and moved mom_vi_calc_hdiv to mom_common/mom_calc_hdiv

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.16 2004/05/24 15:15:16 adcroft Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6
7 SUBROUTINE MOM_VECINV(
8 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
9 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
10 U fVerU, fVerV,
11 I myTime, myIter, myThid)
12 C /==========================================================\
13 C | S/R MOM_VECINV |
14 C | o Form the right hand-side of the momentum equation. |
15 C |==========================================================|
16 C | Terms are evaluated one layer at a time working from |
17 C | the bottom to the top. The vertically integrated |
18 C | barotropic flow tendency term is evluated by summing the |
19 C | tendencies. |
20 C | Notes: |
21 C | We have not sorted out an entirely satisfactory formula |
22 C | for the diffusion equation bc with lopping. The present |
23 C | form produces a diffusive flux that does not scale with |
24 C | open-area. Need to do something to solidfy this and to |
25 C | deal "properly" with thin walls. |
26 C \==========================================================/
27 IMPLICIT NONE
28
29 C == Global variables ==
30 #include "SIZE.h"
31 #include "DYNVARS.h"
32 #include "EEPARAMS.h"
33 #include "PARAMS.h"
34 #include "GRID.h"
35 #ifdef ALLOW_TIMEAVE
36 #include "TIMEAVE_STATV.h"
37 #endif
38
39 C == Routine arguments ==
40 C fVerU - Flux of momentum in the vertical
41 C fVerV direction out of the upper face of a cell K
42 C ( flux into the cell above ).
43 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
44 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
45 C results will be set.
46 C kUp, kDown - Index for upper and lower layers.
47 C myThid - Instance number for this innvocation of CALC_MOM_RHS
48 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
51 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
52 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
53 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
54 INTEGER kUp,kDown
55 _RL myTime
56 INTEGER myIter
57 INTEGER myThid
58 INTEGER bi,bj,iMin,iMax,jMin,jMax
59
60 #ifdef ALLOW_MOM_VECINV
61
62 C == Functions ==
63 LOGICAL DIFFERENT_MULTIPLE
64 EXTERNAL DIFFERENT_MULTIPLE
65
66 C == Local variables ==
67 _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 C I,J,K - Loop counters
89 INTEGER i,j,k
90 C rVelMaskOverride - Factor for imposing special surface boundary conditions
91 C ( set according to free-surface condition ).
92 C hFacROpen - Lopped cell factos used tohold fraction of open
93 C hFacRClosed and closed cell wall.
94 _RL rVelMaskOverride
95 C xxxFac - On-off tracer parameters used for switching terms off.
96 _RL uDudxFac
97 _RL AhDudxFac
98 _RL A4DuxxdxFac
99 _RL vDudyFac
100 _RL AhDudyFac
101 _RL A4DuyydyFac
102 _RL rVelDudrFac
103 _RL ArDudrFac
104 _RL fuFac
105 _RL phxFac
106 _RL mtFacU
107 _RL uDvdxFac
108 _RL AhDvdxFac
109 _RL A4DvxxdxFac
110 _RL vDvdyFac
111 _RL AhDvdyFac
112 _RL A4DvyydyFac
113 _RL rVelDvdrFac
114 _RL ArDvdrFac
115 _RL fvFac
116 _RL phyFac
117 _RL vForcFac
118 _RL mtFacV
119 _RL wVelBottomOverride
120 LOGICAL bottomDragTerms
121 LOGICAL writeDiag
122 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
126
127 #ifdef ALLOW_AUTODIFF_TAMC
128 C-- only the kDown part of fverU/V is set in this subroutine
129 C-- the kUp is still required
130 C-- In the case of mom_fluxform Kup is set as well
131 C-- (at least in part)
132 fVerU(1,1,kUp) = fVerU(1,1,kUp)
133 fVerV(1,1,kUp) = fVerV(1,1,kUp)
134 #endif
135
136 rVelMaskOverride=1.
137 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
138 wVelBottomOverride=1.
139 IF (k.EQ.Nr) wVelBottomOverride=0.
140 writeDiag = DIFFERENT_MULTIPLE(diagFreq, myTime,
141 & myTime-deltaTClock)
142
143 C Initialise intermediate terms
144 DO J=1-OLy,sNy+OLy
145 DO I=1-OLx,sNx+OLx
146 aF(i,j) = 0.
147 vF(i,j) = 0.
148 vrF(i,j) = 0.
149 uCf(i,j) = 0.
150 vCf(i,j) = 0.
151 mT(i,j) = 0.
152 pF(i,j) = 0.
153 del2u(i,j) = 0.
154 del2v(i,j) = 0.
155 dStar(i,j) = 0.
156 zStar(i,j) = 0.
157 uDiss(i,j) = 0.
158 vDiss(i,j) = 0.
159 vort3(i,j) = 0.
160 omega3(i,j) = 0.
161 ke(i,j) = 0.
162 #ifdef ALLOW_AUTODIFF_TAMC
163 strain(i,j) = 0. _d 0
164 tension(i,j) = 0. _d 0
165 #endif
166 ENDDO
167 ENDDO
168
169 C-- Term by term tracer parmeters
170 C o U momentum equation
171 uDudxFac = afFacMom*1.
172 AhDudxFac = vfFacMom*1.
173 A4DuxxdxFac = vfFacMom*1.
174 vDudyFac = afFacMom*1.
175 AhDudyFac = vfFacMom*1.
176 A4DuyydyFac = vfFacMom*1.
177 rVelDudrFac = afFacMom*1.
178 ArDudrFac = vfFacMom*1.
179 mTFacU = mtFacMom*1.
180 fuFac = cfFacMom*1.
181 phxFac = pfFacMom*1.
182 C o V momentum equation
183 uDvdxFac = afFacMom*1.
184 AhDvdxFac = vfFacMom*1.
185 A4DvxxdxFac = vfFacMom*1.
186 vDvdyFac = afFacMom*1.
187 AhDvdyFac = vfFacMom*1.
188 A4DvyydyFac = vfFacMom*1.
189 rVelDvdrFac = afFacMom*1.
190 ArDvdrFac = vfFacMom*1.
191 mTFacV = mtFacMom*1.
192 fvFac = cfFacMom*1.
193 phyFac = pfFacMom*1.
194 vForcFac = foFacMom*1.
195
196 IF ( no_slip_bottom
197 & .OR. bottomDragQuadratic.NE.0.
198 & .OR. bottomDragLinear.NE.0.) THEN
199 bottomDragTerms=.TRUE.
200 ELSE
201 bottomDragTerms=.FALSE.
202 ENDIF
203
204 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
205 IF (staggerTimeStep) THEN
206 phxFac = 0.
207 phyFac = 0.
208 ENDIF
209
210 C-- Calculate open water fraction at vorticity points
211 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
212
213 C---- Calculate common quantities used in both U and V equations
214 C Calculate tracer cell face open areas
215 DO j=1-OLy,sNy+OLy
216 DO i=1-OLx,sNx+OLx
217 xA(i,j) = _dyG(i,j,bi,bj)
218 & *drF(k)*_hFacW(i,j,k,bi,bj)
219 yA(i,j) = _dxG(i,j,bi,bj)
220 & *drF(k)*_hFacS(i,j,k,bi,bj)
221 ENDDO
222 ENDDO
223
224 C Make local copies of horizontal flow field
225 DO j=1-OLy,sNy+OLy
226 DO i=1-OLx,sNx+OLx
227 uFld(i,j) = uVel(i,j,k,bi,bj)
228 vFld(i,j) = vVel(i,j,k,bi,bj)
229 ENDDO
230 ENDDO
231
232 C note (jmc) : Dissipation and Vort3 advection do not necesary
233 C use the same maskZ (and hFacZ) => needs 2 call(s)
234 c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
235
236 CALL MOM_CALC_KE(bi,bj,k,2,uFld,vFld,KE,myThid)
237
238 CALL MOM_CALC_HDIV(bi,bj,k,2,uFld,vFld,hDiv,myThid)
239
240 CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
241
242 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
243
244 IF (momViscosity) THEN
245 C Calculate del^2 u and del^2 v for bi-harmonic term
246 IF (viscA4.NE.0. .OR. viscA4Grid.NE.0.) THEN
247 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
248 O del2u,del2v,
249 & myThid)
250 CALL MOM_CALC_HDIV(bi,bj,k,2,del2u,del2v,dStar,myThid)
251 CALL MOM_VI_CALC_RELVORT3(
252 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
253 ENDIF
254 C Calculate dissipation terms for U and V equations
255 C in terms of vorticity and divergence
256 IF (viscAh.NE.0. .OR. viscA4.NE.0. .OR.
257 & viscAhGrid.NE.0. .OR. viscA4Grid.NE.0. ) THEN
258 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
259 O uDiss,vDiss,
260 & myThid)
261 ENDIF
262 C or in terms of tension and strain
263 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
264 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
265 O tension,
266 I myThid)
267 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
268 O strain,
269 I myThid)
270 CALL MOM_HDISSIP(bi,bj,k,
271 I tension,strain,hFacZ,viscAtension,viscAstrain,
272 O uDiss,vDiss,
273 I myThid)
274 ENDIF
275 ENDIF
276
277 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
278 c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
279
280 C---- Zonal momentum equation starts here
281
282 C-- Vertical flux (fVer is at upper face of "u" cell)
283
284 C Eddy component of vertical flux (interior component only) -> vrF
285 IF (momViscosity.AND..NOT.implicitViscosity)
286 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
287
288 C Combine fluxes
289 DO j=jMin,jMax
290 DO i=iMin,iMax
291 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
292 ENDDO
293 ENDDO
294
295 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
296 DO j=2-Oly,sNy+Oly-1
297 DO i=2-Olx,sNx+Olx-1
298 gU(i,j,k,bi,bj) = uDiss(i,j)
299 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
300 & *recip_rAw(i,j,bi,bj)
301 & *(
302 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
303 & )
304 & - phxFac*dPhiHydX(i,j)
305 ENDDO
306 ENDDO
307
308 C-- No-slip and drag BCs appear as body forces in cell abutting topography
309 IF (momViscosity.AND.no_slip_sides) THEN
310 C- No-slip BCs impose a drag at walls...
311 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
312 DO j=jMin,jMax
313 DO i=iMin,iMax
314 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
315 ENDDO
316 ENDDO
317 ENDIF
318
319 C- No-slip BCs impose a drag at bottom
320 IF (momViscosity.AND.bottomDragTerms) THEN
321 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
322 DO j=jMin,jMax
323 DO i=iMin,iMax
324 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
325 ENDDO
326 ENDDO
327 ENDIF
328
329 C-- Metric terms for curvilinear grid systems
330 c IF (usingSphericalPolarMTerms) THEN
331 C o Spherical polar grid metric terms
332 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
333 c DO j=jMin,jMax
334 c DO i=iMin,iMax
335 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
336 c ENDDO
337 c ENDDO
338 c ENDIF
339
340 C---- Meridional momentum equation starts here
341
342 C-- Vertical flux (fVer is at upper face of "v" cell)
343
344 C Eddy component of vertical flux (interior component only) -> vrF
345 IF (momViscosity.AND..NOT.implicitViscosity)
346 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
347
348 C Combine fluxes -> fVerV
349 DO j=jMin,jMax
350 DO i=iMin,iMax
351 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
352 ENDDO
353 ENDDO
354
355 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
356 DO j=jMin,jMax
357 DO i=iMin,iMax
358 gV(i,j,k,bi,bj) = vDiss(i,j)
359 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
360 & *recip_rAs(i,j,bi,bj)
361 & *(
362 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
363 & )
364 & - phyFac*dPhiHydY(i,j)
365 ENDDO
366 ENDDO
367
368 C-- No-slip and drag BCs appear as body forces in cell abutting topography
369 IF (momViscosity.AND.no_slip_sides) THEN
370 C- No-slip BCs impose a drag at walls...
371 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
372 DO j=jMin,jMax
373 DO i=iMin,iMax
374 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
375 ENDDO
376 ENDDO
377 ENDIF
378 C- No-slip BCs impose a drag at bottom
379 IF (momViscosity.AND.bottomDragTerms) THEN
380 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
381 DO j=jMin,jMax
382 DO i=iMin,iMax
383 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
384 ENDDO
385 ENDDO
386 ENDIF
387
388 C-- Metric terms for curvilinear grid systems
389 c IF (usingSphericalPolarMTerms) THEN
390 C o Spherical polar grid metric terms
391 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
392 c DO j=jMin,jMax
393 c DO i=iMin,iMax
394 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
395 c ENDDO
396 c ENDDO
397 c ENDIF
398
399 C-- Horizontal Coriolis terms
400 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
401 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
402 & uCf,vCf,myThid)
403 DO j=jMin,jMax
404 DO i=iMin,iMax
405 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
406 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
407 ENDDO
408 ENDDO
409 IF ( writeDiag ) THEN
410 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
411 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
412 ENDIF
413 ENDIF
414
415 IF (momAdvection) THEN
416 C-- Horizontal advection of relative vorticity
417 c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
418 CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
419 & uCf,myThid)
420 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
421 DO j=jMin,jMax
422 DO i=iMin,iMax
423 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
424 ENDDO
425 ENDDO
426 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
427 CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
428 & vCf,myThid)
429 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
430 DO j=jMin,jMax
431 DO i=iMin,iMax
432 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
433 ENDDO
434 ENDDO
435
436 IF ( writeDiag ) THEN
437 CALL WRITE_LOCAL_RL('zV','I10',1,uCf,bi,bj,k,myIter,myThid)
438 CALL WRITE_LOCAL_RL('zU','I10',1,vCf,bi,bj,k,myIter,myThid)
439 ENDIF
440 #ifdef ALLOW_TIMEAVE
441 #ifndef HRCUBE
442 IF (taveFreq.GT.0.) THEN
443 CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
444 & Nr, k, bi, bj, myThid)
445 CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
446 & Nr, k, bi, bj, myThid)
447 ENDIF
448 #endif /* ALLOW_TIMEAVE */
449 #endif /* ndef HRCUBE */
450
451 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
452 IF ( .NOT. momImplVertAdv ) THEN
453 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
454 DO j=jMin,jMax
455 DO i=iMin,iMax
456 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
457 ENDDO
458 ENDDO
459 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
460 DO j=jMin,jMax
461 DO i=iMin,iMax
462 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
463 ENDDO
464 ENDDO
465 ENDIF
466
467 C-- Bernoulli term
468 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
469 DO j=jMin,jMax
470 DO i=iMin,iMax
471 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
472 ENDDO
473 ENDDO
474 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
475 DO j=jMin,jMax
476 DO i=iMin,iMax
477 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
478 ENDDO
479 ENDDO
480 IF ( writeDiag ) THEN
481 CALL WRITE_LOCAL_RL('KEx','I10',1,uCf,bi,bj,k,myIter,myThid)
482 CALL WRITE_LOCAL_RL('KEy','I10',1,vCf,bi,bj,k,myIter,myThid)
483 ENDIF
484
485 C-- end if momAdvection
486 ENDIF
487
488 C-- Set du/dt & dv/dt on boundaries to zero
489 DO j=jMin,jMax
490 DO i=iMin,iMax
491 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
492 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
493 ENDDO
494 ENDDO
495
496
497 IF ( writeDiag ) THEN
498 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
499 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
500 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
501 CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
502 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
503 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
504 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
505 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
506 ENDIF
507
508 #endif /* ALLOW_MOM_VECINV */
509
510 RETURN
511 END

  ViewVC Help
Powered by ViewVC 1.1.22