/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download)
Fri Oct 10 23:00:01 2003 UTC (20 years, 7 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint51k_post, checkpoint51o_pre, checkpoint51l_post, checkpoint51n_post, checkpoint51j_post, checkpoint51n_pre, checkpoint51l_pre, checkpoint51m_post
Branch point for: tg2-branch, checkpoint51n_branch
Changes since 1.7: +10 -11 lines
Added some AD-related initialisations in mom_vecinv/ mom_fluxform/

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.7 2003/08/03 02:49:35 jmc Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 SUBROUTINE MOM_VECINV(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
8 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
9 U fVerU, fVerV,
10 I myCurrentTime, myIter, myThid)
11 C /==========================================================\
12 C | S/R MOM_VECINV |
13 C | o Form the right hand-side of the momentum equation. |
14 C |==========================================================|
15 C | Terms are evaluated one layer at a time working from |
16 C | the bottom to the top. The vertically integrated |
17 C | barotropic flow tendency term is evluated by summing the |
18 C | tendencies. |
19 C | Notes: |
20 C | We have not sorted out an entirely satisfactory formula |
21 C | for the diffusion equation bc with lopping. The present |
22 C | form produces a diffusive flux that does not scale with |
23 C | open-area. Need to do something to solidfy this and to |
24 C | deal "properly" with thin walls. |
25 C \==========================================================/
26 IMPLICIT NONE
27
28 C == Global variables ==
29 #include "SIZE.h"
30 #include "DYNVARS.h"
31 #include "EEPARAMS.h"
32 #include "PARAMS.h"
33 #include "GRID.h"
34 #ifdef ALLOW_TIMEAVE
35 #include "TIMEAVE_STATV.h"
36 #endif
37
38 C == Routine arguments ==
39 C fVerU - Flux of momentum in the vertical
40 C fVerV direction out of the upper face of a cell K
41 C ( flux into the cell above ).
42 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
43 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
44 C results will be set.
45 C kUp, kDown - Index for upper and lower layers.
46 C myThid - Instance number for this innvocation of CALC_MOM_RHS
47 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
48 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
50 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
51 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
52 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
53 INTEGER kUp,kDown
54 _RL myCurrentTime
55 INTEGER myIter
56 INTEGER myThid
57 INTEGER bi,bj,iMin,iMax,jMin,jMax
58
59 #ifndef DISABLE_MOM_VECINV
60
61 C == Functions ==
62 LOGICAL DIFFERENT_MULTIPLE
63 EXTERNAL DIFFERENT_MULTIPLE
64
65 C == Local variables ==
66 _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 C I,J,K - Loop counters
88 INTEGER i,j,k
89 C rVelMaskOverride - Factor for imposing special surface boundary conditions
90 C ( set according to free-surface condition ).
91 C hFacROpen - Lopped cell factos used tohold fraction of open
92 C hFacRClosed and closed cell wall.
93 _RL rVelMaskOverride
94 C xxxFac - On-off tracer parameters used for switching terms off.
95 _RL uDudxFac
96 _RL AhDudxFac
97 _RL A4DuxxdxFac
98 _RL vDudyFac
99 _RL AhDudyFac
100 _RL A4DuyydyFac
101 _RL rVelDudrFac
102 _RL ArDudrFac
103 _RL fuFac
104 _RL phxFac
105 _RL mtFacU
106 _RL uDvdxFac
107 _RL AhDvdxFac
108 _RL A4DvxxdxFac
109 _RL vDvdyFac
110 _RL AhDvdyFac
111 _RL A4DvyydyFac
112 _RL rVelDvdrFac
113 _RL ArDvdrFac
114 _RL fvFac
115 _RL phyFac
116 _RL vForcFac
117 _RL mtFacV
118 INTEGER km1,kp1
119 _RL wVelBottomOverride
120 LOGICAL bottomDragTerms
121 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125
126 km1=MAX(1,k-1)
127 kp1=MIN(Nr,k+1)
128 rVelMaskOverride=1.
129 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
130 wVelBottomOverride=1.
131 IF (k.EQ.Nr) wVelBottomOverride=0.
132
133 C Initialise intermediate terms
134 DO J=1-OLy,sNy+OLy
135 DO I=1-OLx,sNx+OLx
136 aF(i,j) = 0.
137 vF(i,j) = 0.
138 vrF(i,j) = 0.
139 uCf(i,j) = 0.
140 vCf(i,j) = 0.
141 mT(i,j) = 0.
142 pF(i,j) = 0.
143 del2u(i,j) = 0.
144 del2v(i,j) = 0.
145 dStar(i,j) = 0.
146 zStar(i,j) = 0.
147 uDiss(i,j) = 0.
148 vDiss(i,j) = 0.
149 vort3(i,j) = 0.
150 omega3(i,j) = 0.
151 ke(i,j) = 0.
152 #ifdef ALLOW_AUTODIFF_TAMC
153 strain(i,j) = 0. _d 0
154 tension(i,j) = 0. _d 0
155 fVerU(i,j,1) = 0. _d 0
156 fVerU(i,j,2) = 0. _d 0
157 fVerV(i,j,1) = 0. _d 0
158 fVerV(i,j,2) = 0. _d 0
159 #endif
160 ENDDO
161 ENDDO
162
163 C-- Term by term tracer parmeters
164 C o U momentum equation
165 uDudxFac = afFacMom*1.
166 AhDudxFac = vfFacMom*1.
167 A4DuxxdxFac = vfFacMom*1.
168 vDudyFac = afFacMom*1.
169 AhDudyFac = vfFacMom*1.
170 A4DuyydyFac = vfFacMom*1.
171 rVelDudrFac = afFacMom*1.
172 ArDudrFac = vfFacMom*1.
173 mTFacU = mtFacMom*1.
174 fuFac = cfFacMom*1.
175 phxFac = pfFacMom*1.
176 C o V momentum equation
177 uDvdxFac = afFacMom*1.
178 AhDvdxFac = vfFacMom*1.
179 A4DvxxdxFac = vfFacMom*1.
180 vDvdyFac = afFacMom*1.
181 AhDvdyFac = vfFacMom*1.
182 A4DvyydyFac = vfFacMom*1.
183 rVelDvdrFac = afFacMom*1.
184 ArDvdrFac = vfFacMom*1.
185 mTFacV = mtFacMom*1.
186 fvFac = cfFacMom*1.
187 phyFac = pfFacMom*1.
188 vForcFac = foFacMom*1.
189
190 IF ( no_slip_bottom
191 & .OR. bottomDragQuadratic.NE.0.
192 & .OR. bottomDragLinear.NE.0.) THEN
193 bottomDragTerms=.TRUE.
194 ELSE
195 bottomDragTerms=.FALSE.
196 ENDIF
197
198 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
199 IF (staggerTimeStep) THEN
200 phxFac = 0.
201 phyFac = 0.
202 ENDIF
203
204 C-- Calculate open water fraction at vorticity points
205 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
206
207 C---- Calculate common quantities used in both U and V equations
208 C Calculate tracer cell face open areas
209 DO j=1-OLy,sNy+OLy
210 DO i=1-OLx,sNx+OLx
211 xA(i,j) = _dyG(i,j,bi,bj)
212 & *drF(k)*_hFacW(i,j,k,bi,bj)
213 yA(i,j) = _dxG(i,j,bi,bj)
214 & *drF(k)*_hFacS(i,j,k,bi,bj)
215 ENDDO
216 ENDDO
217
218 C Make local copies of horizontal flow field
219 DO j=1-OLy,sNy+OLy
220 DO i=1-OLx,sNx+OLx
221 uFld(i,j) = uVel(i,j,k,bi,bj)
222 vFld(i,j) = vVel(i,j,k,bi,bj)
223 ENDDO
224 ENDDO
225
226 C note (jmc) : Dissipation and Vort3 advection do not necesary
227 C use the same maskZ (and hFacZ) => needs 2 call(s)
228 c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
229
230 CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
231
232 CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid)
233
234 CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
235
236 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
237
238 IF (momViscosity) THEN
239 C Calculate del^2 u and del^2 v for bi-harmonic term
240 IF (viscA4.NE.0.) THEN
241 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
242 O del2u,del2v,
243 & myThid)
244 CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid)
245 CALL MOM_VI_CALC_RELVORT3(
246 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
247 ENDIF
248 C Calculate dissipation terms for U and V equations
249 C in terms of vorticity and divergence
250 IF (viscAh.NE.0. .OR. viscA4.NE.0.) THEN
251 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
252 O uDiss,vDiss,
253 & myThid)
254 ENDIF
255 C or in terms of tension and strain
256 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
257 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
258 O tension,
259 I myThid)
260 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
261 O strain,
262 I myThid)
263 CALL MOM_HDISSIP(bi,bj,k,
264 I tension,strain,hFacZ,viscAtension,viscAstrain,
265 O uDiss,vDiss,
266 I myThid)
267 ENDIF
268 ENDIF
269
270 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
271 c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
272
273 C---- Zonal momentum equation starts here
274
275 C-- Vertical flux (fVer is at upper face of "u" cell)
276
277 C Eddy component of vertical flux (interior component only) -> vrF
278 IF (momViscosity.AND..NOT.implicitViscosity)
279 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
280
281 C Combine fluxes
282 DO j=jMin,jMax
283 DO i=iMin,iMax
284 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
285 ENDDO
286 ENDDO
287
288 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
289 DO j=2-Oly,sNy+Oly-1
290 DO i=2-Olx,sNx+Olx-1
291 gU(i,j,k,bi,bj) = uDiss(i,j)
292 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
293 & *recip_rAw(i,j,bi,bj)
294 & *(
295 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
296 & )
297 & - phxFac*dPhiHydX(i,j)
298 ENDDO
299 ENDDO
300
301 C-- No-slip and drag BCs appear as body forces in cell abutting topography
302 IF (momViscosity.AND.no_slip_sides) THEN
303 C- No-slip BCs impose a drag at walls...
304 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
305 DO j=jMin,jMax
306 DO i=iMin,iMax
307 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
308 ENDDO
309 ENDDO
310 ENDIF
311
312 C- No-slip BCs impose a drag at bottom
313 IF (momViscosity.AND.bottomDragTerms) THEN
314 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
315 DO j=jMin,jMax
316 DO i=iMin,iMax
317 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
318 ENDDO
319 ENDDO
320 ENDIF
321
322 C-- Metric terms for curvilinear grid systems
323 c IF (usingSphericalPolarMTerms) THEN
324 C o Spherical polar grid metric terms
325 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
326 c DO j=jMin,jMax
327 c DO i=iMin,iMax
328 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
329 c ENDDO
330 c ENDDO
331 c ENDIF
332
333 C---- Meridional momentum equation starts here
334
335 C-- Vertical flux (fVer is at upper face of "v" cell)
336
337 C Eddy component of vertical flux (interior component only) -> vrF
338 IF (momViscosity.AND..NOT.implicitViscosity)
339 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
340
341 C Combine fluxes -> fVerV
342 DO j=jMin,jMax
343 DO i=iMin,iMax
344 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
345 ENDDO
346 ENDDO
347
348 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
349 DO j=jMin,jMax
350 DO i=iMin,iMax
351 gV(i,j,k,bi,bj) = vDiss(i,j)
352 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
353 & *recip_rAs(i,j,bi,bj)
354 & *(
355 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
356 & )
357 & - phyFac*dPhiHydY(i,j)
358 ENDDO
359 ENDDO
360
361 C-- No-slip and drag BCs appear as body forces in cell abutting topography
362 IF (momViscosity.AND.no_slip_sides) THEN
363 C- No-slip BCs impose a drag at walls...
364 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
365 DO j=jMin,jMax
366 DO i=iMin,iMax
367 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
368 ENDDO
369 ENDDO
370 ENDIF
371 C- No-slip BCs impose a drag at bottom
372 IF (momViscosity.AND.bottomDragTerms) THEN
373 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
374 DO j=jMin,jMax
375 DO i=iMin,iMax
376 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
377 ENDDO
378 ENDDO
379 ENDIF
380
381 C-- Metric terms for curvilinear grid systems
382 c IF (usingSphericalPolarMTerms) THEN
383 C o Spherical polar grid metric terms
384 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
385 c DO j=jMin,jMax
386 c DO i=iMin,iMax
387 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
388 c ENDDO
389 c ENDDO
390 c ENDIF
391
392 C-- Horizontal Coriolis terms
393 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
394 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
395 & uCf,vCf,myThid)
396 DO j=jMin,jMax
397 DO i=iMin,iMax
398 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
399 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
400 ENDDO
401 ENDDO
402 ENDIF
403
404 IF (momAdvection) THEN
405 C-- Horizontal advection of relative vorticity
406 c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
407 CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
408 & uCf,myThid)
409 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
410 DO j=jMin,jMax
411 DO i=iMin,iMax
412 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
413 ENDDO
414 ENDDO
415 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
416 CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
417 & vCf,myThid)
418 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
419 DO j=jMin,jMax
420 DO i=iMin,iMax
421 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
422 ENDDO
423 ENDDO
424
425 #ifdef ALLOW_TIMEAVE
426 IF (taveFreq.GT.0.) THEN
427 CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
428 & Nr, k, bi, bj, myThid)
429 CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
430 & Nr, k, bi, bj, myThid)
431 ENDIF
432 #endif
433
434 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
435 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
436 DO j=jMin,jMax
437 DO i=iMin,iMax
438 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
439 ENDDO
440 ENDDO
441 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
442 DO j=jMin,jMax
443 DO i=iMin,iMax
444 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
445 ENDDO
446 ENDDO
447
448 C-- Bernoulli term
449 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
450 DO j=jMin,jMax
451 DO i=iMin,iMax
452 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
453 ENDDO
454 ENDDO
455 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
456 DO j=jMin,jMax
457 DO i=iMin,iMax
458 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
459 ENDDO
460 ENDDO
461 C-- end if momAdvection
462 ENDIF
463
464 C-- Set du/dt & dv/dt on boundaries to zero
465 DO j=jMin,jMax
466 DO i=iMin,iMax
467 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
468 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
469 ENDDO
470 ENDDO
471
472
473 IF (
474 & DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,
475 & myCurrentTime-deltaTClock)
476 & ) THEN
477 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
478 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
479 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
480 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
481 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
482 CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
483 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
484 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
485 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
486 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
487 ENDIF
488
489 #endif /* DISABLE_MOM_VECINV */
490
491 RETURN
492 END

  ViewVC Help
Powered by ViewVC 1.1.22