/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Diff of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by adcroft, Thu Sep 6 14:23:58 2001 UTC revision 1.9 by heimbach, Sun Oct 26 01:01:23 2003 UTC
# Line 5  C $Name$ Line 5  C $Name$
5    
6        SUBROUTINE MOM_VECINV(        SUBROUTINE MOM_VECINV(
7       I        bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,       I        bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
8       I        phi_hyd,KappaRU,KappaRV,       I        dPhiHydX,dPhiHydY,KappaRU,KappaRV,
9       U        fVerU, fVerV,       U        fVerU, fVerV,
10       I        myCurrentTime, myIter, myThid)       I        myCurrentTime, myIter, myThid)
11  C     /==========================================================\  C     /==========================================================\
# Line 31  C     == Global variables == Line 31  C     == Global variables ==
31  #include "EEPARAMS.h"  #include "EEPARAMS.h"
32  #include "PARAMS.h"  #include "PARAMS.h"
33  #include "GRID.h"  #include "GRID.h"
34    #ifdef ALLOW_TIMEAVE
35    #include "TIMEAVE_STATV.h"
36    #endif
37    
38  C     == Routine arguments ==  C     == Routine arguments ==
39  C     fVerU   - Flux of momentum in the vertical  C     fVerU   - Flux of momentum in the vertical
40  C     fVerV     direction out of the upper face of a cell K  C     fVerV     direction out of the upper face of a cell K
41  C               ( flux into the cell above ).  C               ( flux into the cell above ).
42  C     phi_hyd - Hydrostatic pressure  C     dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
43  C     bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation  C     bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
44  C                                      results will be set.  C                                      results will be set.
45  C     kUp, kDown                     - Index for upper and lower layers.  C     kUp, kDown                     - Index for upper and lower layers.
46  C     myThid - Instance number for this innvocation of CALC_MOM_RHS  C     myThid - Instance number for this innvocation of CALC_MOM_RHS
47        _RL phi_hyd(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
48          _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49        _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
50        _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
51        _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)        _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
# Line 52  C     myThid - Instance number for this Line 56  C     myThid - Instance number for this
56        INTEGER myThid        INTEGER myThid
57        INTEGER bi,bj,iMin,iMax,jMin,jMax        INTEGER bi,bj,iMin,iMax,jMin,jMax
58    
59    #ifndef DISABLE_MOM_VECINV
60    
61  C     == Functions ==  C     == Functions ==
62        LOGICAL  DIFFERENT_MULTIPLE        LOGICAL  DIFFERENT_MULTIPLE
63        EXTERNAL DIFFERENT_MULTIPLE        EXTERNAL DIFFERENT_MULTIPLE
# Line 72  C     == Local variables == Line 78  C     == Local variables ==
78        _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79        _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80        _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
       _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
       _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)  
81        _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82        _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83        _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
# Line 111  C     xxxFac - On-off tracer parameters Line 115  C     xxxFac - On-off tracer parameters
115        _RL  phyFac        _RL  phyFac
116        _RL  vForcFac        _RL  vForcFac
117        _RL  mtFacV        _RL  mtFacV
       INTEGER km1,kp1  
118        _RL wVelBottomOverride        _RL wVelBottomOverride
119        LOGICAL bottomDragTerms        LOGICAL bottomDragTerms
120        _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
# Line 119  C     xxxFac - On-off tracer parameters Line 122  C     xxxFac - On-off tracer parameters
122        _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123        _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124    
125        km1=MAX(1,k-1)  #ifdef ALLOW_AUTODIFF_TAMC
126        kp1=MIN(Nr,k+1)  C--   only the kDown part of fverU/V is set in this subroutine
127    C--   the kUp is still required
128    C--   In the case of mom_fluxform Kup is set as well
129    C--   (at least in part)
130          fVerU(1,1,kUp) = fVerU(1,1,kUp)
131          fVerV(1,1,kUp) = fVerV(1,1,kUp)
132    #endif
133    
134        rVelMaskOverride=1.        rVelMaskOverride=1.
135        IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac        IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
136        wVelBottomOverride=1.        wVelBottomOverride=1.
# Line 145  C     Initialise intermediate terms Line 155  C     Initialise intermediate terms
155          vort3(i,j) = 0.          vort3(i,j) = 0.
156          omega3(i,j) = 0.          omega3(i,j) = 0.
157          ke(i,j) = 0.          ke(i,j) = 0.
158    #ifdef ALLOW_AUTODIFF_TAMC
159            strain(i,j)  = 0. _d 0
160            tension(i,j) = 0. _d 0
161    #endif
162         ENDDO         ENDDO
163        ENDDO        ENDDO
164    
# Line 211  C     Make local copies of horizontal fl Line 225  C     Make local copies of horizontal fl
225         ENDDO         ENDDO
226        ENDDO        ENDDO
227    
228  C     Calculate velocity field "volume transports" through tracer cell faces.  C note (jmc) : Dissipation and Vort3 advection do not necesary
229        DO j=1-OLy,sNy+OLy  C              use the same maskZ (and hFacZ)  => needs 2 call(s)
230         DO i=1-OLx,sNx+OLx  c     CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
         uTrans(i,j) = uFld(i,j)*xA(i,j)  
         vTrans(i,j) = vFld(i,j)*yA(i,j)  
        ENDDO  
       ENDDO  
231    
232        CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)        CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
233    
# Line 225  C     Calculate velocity field "volume t Line 235  C     Calculate velocity field "volume t
235    
236        CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)        CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
237    
238        CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)  c     CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
239    
240        IF (momViscosity) THEN        IF (momViscosity) THEN
241  C      Calculate del^2 u and del^2 v for bi-harmonic term  C      Calculate del^2 u and del^2 v for bi-harmonic term
# Line 259  C      or in terms of tension and strain Line 269  C      or in terms of tension and strain
269         ENDIF         ENDIF
270        ENDIF        ENDIF
271    
272    C-    Return to standard hfacZ (min-4) and mask vort3 accordingly:
273    c     CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
274    
275  C---- Zonal momentum equation starts here  C---- Zonal momentum equation starts here
276    
277  C--   Vertical flux (fVer is at upper face of "u" cell)  C--   Vertical flux (fVer is at upper face of "u" cell)
# Line 274  C     Combine fluxes Line 287  C     Combine fluxes
287         ENDDO         ENDDO
288        ENDDO        ENDDO
289    
 C---  Hydrostatic term ( -1/rhoConst . dphi/dx )  
       IF (momPressureForcing) THEN  
        DO j=1-Olx,sNy+Oly  
         DO i=2-Olx,sNx+Olx  
          pf(i,j) = - _recip_dxC(i,j,bi,bj)  
      &    *(phi_hyd(i,j,k)-phi_hyd(i-1,j,k))  
         ENDDO  
        ENDDO  
       ENDIF  
   
290  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
291        DO j=2-Oly,sNy+Oly-1        DO j=2-Oly,sNy+Oly-1
292         DO i=2-Olx,sNx+Olx-1         DO i=2-Olx,sNx+Olx-1
# Line 293  C--   Tendency is minus divergence of th Line 296  C--   Tendency is minus divergence of th
296       &  *(       &  *(
297       &   +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac       &   +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
298       &   )       &   )
299       & _PHM( +phxFac * pf(i,j) )       &  - phxFac*dPhiHydX(i,j)
300         ENDDO         ENDDO
301        ENDDO        ENDDO
302    
# Line 307  C-     No-slip BCs impose a drag at wall Line 310  C-     No-slip BCs impose a drag at wall
310          ENDDO          ENDDO
311         ENDDO         ENDDO
312        ENDIF        ENDIF
313    
314  C-    No-slip BCs impose a drag at bottom  C-    No-slip BCs impose a drag at bottom
315        IF (momViscosity.AND.bottomDragTerms) THEN        IF (momViscosity.AND.bottomDragTerms) THEN
316         CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)         CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
# Line 317  C-    No-slip BCs impose a drag at botto Line 321  C-    No-slip BCs impose a drag at botto
321         ENDDO         ENDDO
322        ENDIF        ENDIF
323    
 C--   Forcing term  
       IF (momForcing)  
      &  CALL EXTERNAL_FORCING_U(  
      I     iMin,iMax,jMin,jMax,bi,bj,k,  
      I     myCurrentTime,myThid)  
   
324  C--   Metric terms for curvilinear grid systems  C--   Metric terms for curvilinear grid systems
325  c     IF (usingSphericalPolarMTerms) THEN  c     IF (usingSphericalPolarMTerms) THEN
326  C      o Spherical polar grid metric terms  C      o Spherical polar grid metric terms
# Line 334  c       ENDDO Line 332  c       ENDDO
332  c      ENDDO  c      ENDDO
333  c     ENDIF  c     ENDIF
334    
 C--   Set du/dt on boundaries to zero  
       DO j=jMin,jMax  
        DO i=iMin,iMax  
         gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)  
        ENDDO  
       ENDDO  
   
   
335  C---- Meridional momentum equation starts here  C---- Meridional momentum equation starts here
336    
337  C--   Vertical flux (fVer is at upper face of "v" cell)  C--   Vertical flux (fVer is at upper face of "v" cell)
# Line 357  C     Combine fluxes -> fVerV Line 347  C     Combine fluxes -> fVerV
347         ENDDO         ENDDO
348        ENDDO        ENDDO
349    
 C---  Hydorstatic term (-1/rhoConst . dphi/dy )  
       IF (momPressureForcing) THEN  
        DO j=jMin,jMax  
         DO i=iMin,iMax  
          pF(i,j) = -_recip_dyC(i,j,bi,bj)  
      &    *(phi_hyd(i,j,k)-phi_hyd(i,j-1,k))  
         ENDDO  
        ENDDO  
       ENDIF  
   
350  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term  C--   Tendency is minus divergence of the fluxes + coriolis + pressure term
351        DO j=jMin,jMax        DO j=jMin,jMax
352         DO i=iMin,iMax         DO i=iMin,iMax
# Line 376  C--   Tendency is minus divergence of th Line 356  C--   Tendency is minus divergence of th
356       &  *(       &  *(
357       &   +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac       &   +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
358       &   )       &   )
359       & _PHM( +phyFac*pf(i,j) )       &  - phyFac*dPhiHydY(i,j)
360         ENDDO         ENDDO
361        ENDDO        ENDDO
362    
# Line 400  C-    No-slip BCs impose a drag at botto Line 380  C-    No-slip BCs impose a drag at botto
380         ENDDO         ENDDO
381        ENDIF        ENDIF
382    
 C--   Forcing term  
       IF (momForcing)  
      & CALL EXTERNAL_FORCING_V(  
      I     iMin,iMax,jMin,jMax,bi,bj,k,  
      I     myCurrentTime,myThid)  
   
383  C--   Metric terms for curvilinear grid systems  C--   Metric terms for curvilinear grid systems
384  c     IF (usingSphericalPolarMTerms) THEN  c     IF (usingSphericalPolarMTerms) THEN
385  C      o Spherical polar grid metric terms  C      o Spherical polar grid metric terms
# Line 417  c       ENDDO Line 391  c       ENDDO
391  c      ENDDO  c      ENDDO
392  c     ENDIF  c     ENDIF
393    
 C--   Set dv/dt on boundaries to zero  
       DO j=jMin,jMax  
        DO i=iMin,iMax  
         gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)  
        ENDDO  
       ENDDO  
   
394  C--   Horizontal Coriolis terms  C--   Horizontal Coriolis terms
395        CALL MOM_VI_CORIOLIS(bi,bj,K,uFld,vFld,omega3,r_hFacZ,        IF (useCoriolis .AND. .NOT.useCDscheme) THEN
396       &                     uCf,vCf,myThid)         CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
397        DO j=jMin,jMax       &                      uCf,vCf,myThid)
398         DO i=iMin,iMax         DO j=jMin,jMax
399          gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j))          DO i=iMin,iMax
400       &                    *_maskW(i,j,k,bi,bj)           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
401          gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j))           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
402       &                    *_maskS(i,j,k,bi,bj)          ENDDO
403         ENDDO         ENDDO
404        ENDDO        ENDIF
405  c     CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)  
406        CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)        IF (momAdvection) THEN
407  c     CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)  C--   Horizontal advection of relative vorticity
408        DO j=jMin,jMax  c      CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
409         DO i=iMin,iMax         CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
410          gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j))       &                        uCf,myThid)
411       &                    *_maskW(i,j,k,bi,bj)  c      CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
412           DO j=jMin,jMax
413            DO i=iMin,iMax
414             gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
415            ENDDO
416         ENDDO         ENDDO
417        ENDDO  c      CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
418  c     CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)         CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
419        CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)       &                        vCf,myThid)
420  c     CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)  c      CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
421        DO j=jMin,jMax         DO j=jMin,jMax
422         DO i=iMin,iMax          DO i=iMin,iMax
423          gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j))           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
424       &                    *_maskS(i,j,k,bi,bj)          ENDDO
425         ENDDO         ENDDO
       ENDDO  
426    
427        IF (momAdvection) THEN  #ifdef ALLOW_TIMEAVE
428  C--   Vertical shear terms (Coriolis)         IF (taveFreq.GT.0.) THEN
429        CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)           CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
430        DO j=jMin,jMax       &                           Nr, k, bi, bj, myThid)
431         DO i=iMin,iMax           CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
432          gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j))       &                           Nr, k, bi, bj, myThid)
433       &                    *_maskW(i,j,k,bi,bj)         ENDIF
434    #endif
435    
436    C--   Vertical shear terms (-w*du/dr & -w*dv/dr)
437           CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
438           DO j=jMin,jMax
439            DO i=iMin,iMax
440             gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
441            ENDDO
442         ENDDO         ENDDO
443        ENDDO         CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
444        CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)         DO j=jMin,jMax
445        DO j=jMin,jMax          DO i=iMin,iMax
446         DO i=iMin,iMax           gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
447          gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j))          ENDDO
      &                    *_maskS(i,j,k,bi,bj)  
448         ENDDO         ENDDO
       ENDDO  
449    
450  C--   Bernoulli term  C--   Bernoulli term
451        CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)         CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
452        DO j=jMin,jMax         DO j=jMin,jMax
453         DO i=iMin,iMax          DO i=iMin,iMax
454          gU(i,j,k,bi,bj) = (gU(i,j,k,bi,bj)+uCf(i,j))           gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
455       &                    *_maskW(i,j,k,bi,bj)          ENDDO
456         ENDDO         ENDDO
457        ENDDO         CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
458        CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)         DO j=jMin,jMax
459            DO i=iMin,iMax
460             gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
461            ENDDO
462           ENDDO
463    C--   end if momAdvection
464          ENDIF
465    
466    C--   Set du/dt & dv/dt on boundaries to zero
467        DO j=jMin,jMax        DO j=jMin,jMax
468         DO i=iMin,iMax         DO i=iMin,iMax
469          gV(i,j,k,bi,bj) = (gV(i,j,k,bi,bj)+vCf(i,j))          gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
470       &                    *_maskS(i,j,k,bi,bj)          gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
471         ENDDO         ENDDO
472        ENDDO        ENDDO
473        ENDIF  
474    
475        IF (        IF (
476       &  DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,       &  DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,
477       &                     myCurrentTime-deltaTClock)       &                     myCurrentTime-deltaTClock)
478       & ) THEN       & ) THEN
        CALL WRITE_LOCAL_RL('Ph','I10',Nr,phi_hyd,bi,bj,1,myIter,myThid)  
479         CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
480         CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
481         CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
# Line 500  C--   Bernoulli term Line 483  C--   Bernoulli term
483         CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
484         CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
485         CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
486         CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)  c      CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
487         CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
488         CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)         CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
489        ENDIF        ENDIF
490    
491    #endif /* DISABLE_MOM_VECINV */
492    
493        RETURN        RETURN
494        END        END

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.9

  ViewVC Help
Powered by ViewVC 1.1.22