/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.14 - (show annotations) (download)
Sat Feb 7 23:15:47 2004 UTC (20 years, 3 months ago) by dimitri
Branch: MAIN
CVS Tags: hrcube4, checkpoint52j_pre, checkpoint52k_post, hrcube_3, checkpoint52j_post
Changes since 1.13: +4 -3 lines
minor bug fixes for viscA4Grid

1 C $Header: /usr/local/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.13 2004/01/25 00:31:52 dimitri Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6
7 SUBROUTINE MOM_VECINV(
8 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
9 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
10 U fVerU, fVerV,
11 I myCurrentTime, myIter, myThid)
12 C /==========================================================\
13 C | S/R MOM_VECINV |
14 C | o Form the right hand-side of the momentum equation. |
15 C |==========================================================|
16 C | Terms are evaluated one layer at a time working from |
17 C | the bottom to the top. The vertically integrated |
18 C | barotropic flow tendency term is evluated by summing the |
19 C | tendencies. |
20 C | Notes: |
21 C | We have not sorted out an entirely satisfactory formula |
22 C | for the diffusion equation bc with lopping. The present |
23 C | form produces a diffusive flux that does not scale with |
24 C | open-area. Need to do something to solidfy this and to |
25 C | deal "properly" with thin walls. |
26 C \==========================================================/
27 IMPLICIT NONE
28
29 C == Global variables ==
30 #include "SIZE.h"
31 #include "DYNVARS.h"
32 #include "EEPARAMS.h"
33 #include "PARAMS.h"
34 #include "GRID.h"
35 #ifdef ALLOW_TIMEAVE
36 #include "TIMEAVE_STATV.h"
37 #endif
38
39 C == Routine arguments ==
40 C fVerU - Flux of momentum in the vertical
41 C fVerV direction out of the upper face of a cell K
42 C ( flux into the cell above ).
43 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
44 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
45 C results will be set.
46 C kUp, kDown - Index for upper and lower layers.
47 C myThid - Instance number for this innvocation of CALC_MOM_RHS
48 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
51 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
52 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
53 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
54 INTEGER kUp,kDown
55 _RL myCurrentTime
56 INTEGER myIter
57 INTEGER myThid
58 INTEGER bi,bj,iMin,iMax,jMin,jMax
59
60 #ifdef ALLOW_MOM_VECINV
61
62 C == Functions ==
63 LOGICAL DIFFERENT_MULTIPLE
64 EXTERNAL DIFFERENT_MULTIPLE
65
66 C == Local variables ==
67 _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 C I,J,K - Loop counters
89 INTEGER i,j,k
90 C rVelMaskOverride - Factor for imposing special surface boundary conditions
91 C ( set according to free-surface condition ).
92 C hFacROpen - Lopped cell factos used tohold fraction of open
93 C hFacRClosed and closed cell wall.
94 _RL rVelMaskOverride
95 C xxxFac - On-off tracer parameters used for switching terms off.
96 _RL uDudxFac
97 _RL AhDudxFac
98 _RL A4DuxxdxFac
99 _RL vDudyFac
100 _RL AhDudyFac
101 _RL A4DuyydyFac
102 _RL rVelDudrFac
103 _RL ArDudrFac
104 _RL fuFac
105 _RL phxFac
106 _RL mtFacU
107 _RL uDvdxFac
108 _RL AhDvdxFac
109 _RL A4DvxxdxFac
110 _RL vDvdyFac
111 _RL AhDvdyFac
112 _RL A4DvyydyFac
113 _RL rVelDvdrFac
114 _RL ArDvdrFac
115 _RL fvFac
116 _RL phyFac
117 _RL vForcFac
118 _RL mtFacV
119 _RL wVelBottomOverride
120 LOGICAL bottomDragTerms
121 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125
126 #ifdef ALLOW_AUTODIFF_TAMC
127 C-- only the kDown part of fverU/V is set in this subroutine
128 C-- the kUp is still required
129 C-- In the case of mom_fluxform Kup is set as well
130 C-- (at least in part)
131 fVerU(1,1,kUp) = fVerU(1,1,kUp)
132 fVerV(1,1,kUp) = fVerV(1,1,kUp)
133 #endif
134
135 rVelMaskOverride=1.
136 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
137 wVelBottomOverride=1.
138 IF (k.EQ.Nr) wVelBottomOverride=0.
139
140 C Initialise intermediate terms
141 DO J=1-OLy,sNy+OLy
142 DO I=1-OLx,sNx+OLx
143 aF(i,j) = 0.
144 vF(i,j) = 0.
145 vrF(i,j) = 0.
146 uCf(i,j) = 0.
147 vCf(i,j) = 0.
148 mT(i,j) = 0.
149 pF(i,j) = 0.
150 del2u(i,j) = 0.
151 del2v(i,j) = 0.
152 dStar(i,j) = 0.
153 zStar(i,j) = 0.
154 uDiss(i,j) = 0.
155 vDiss(i,j) = 0.
156 vort3(i,j) = 0.
157 omega3(i,j) = 0.
158 ke(i,j) = 0.
159 #ifdef ALLOW_AUTODIFF_TAMC
160 strain(i,j) = 0. _d 0
161 tension(i,j) = 0. _d 0
162 #endif
163 ENDDO
164 ENDDO
165
166 C-- Term by term tracer parmeters
167 C o U momentum equation
168 uDudxFac = afFacMom*1.
169 AhDudxFac = vfFacMom*1.
170 A4DuxxdxFac = vfFacMom*1.
171 vDudyFac = afFacMom*1.
172 AhDudyFac = vfFacMom*1.
173 A4DuyydyFac = vfFacMom*1.
174 rVelDudrFac = afFacMom*1.
175 ArDudrFac = vfFacMom*1.
176 mTFacU = mtFacMom*1.
177 fuFac = cfFacMom*1.
178 phxFac = pfFacMom*1.
179 C o V momentum equation
180 uDvdxFac = afFacMom*1.
181 AhDvdxFac = vfFacMom*1.
182 A4DvxxdxFac = vfFacMom*1.
183 vDvdyFac = afFacMom*1.
184 AhDvdyFac = vfFacMom*1.
185 A4DvyydyFac = vfFacMom*1.
186 rVelDvdrFac = afFacMom*1.
187 ArDvdrFac = vfFacMom*1.
188 mTFacV = mtFacMom*1.
189 fvFac = cfFacMom*1.
190 phyFac = pfFacMom*1.
191 vForcFac = foFacMom*1.
192
193 IF ( no_slip_bottom
194 & .OR. bottomDragQuadratic.NE.0.
195 & .OR. bottomDragLinear.NE.0.) THEN
196 bottomDragTerms=.TRUE.
197 ELSE
198 bottomDragTerms=.FALSE.
199 ENDIF
200
201 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
202 IF (staggerTimeStep) THEN
203 phxFac = 0.
204 phyFac = 0.
205 ENDIF
206
207 C-- Calculate open water fraction at vorticity points
208 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
209
210 C---- Calculate common quantities used in both U and V equations
211 C Calculate tracer cell face open areas
212 DO j=1-OLy,sNy+OLy
213 DO i=1-OLx,sNx+OLx
214 xA(i,j) = _dyG(i,j,bi,bj)
215 & *drF(k)*_hFacW(i,j,k,bi,bj)
216 yA(i,j) = _dxG(i,j,bi,bj)
217 & *drF(k)*_hFacS(i,j,k,bi,bj)
218 ENDDO
219 ENDDO
220
221 C Make local copies of horizontal flow field
222 DO j=1-OLy,sNy+OLy
223 DO i=1-OLx,sNx+OLx
224 uFld(i,j) = uVel(i,j,k,bi,bj)
225 vFld(i,j) = vVel(i,j,k,bi,bj)
226 ENDDO
227 ENDDO
228
229 C note (jmc) : Dissipation and Vort3 advection do not necesary
230 C use the same maskZ (and hFacZ) => needs 2 call(s)
231 c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
232
233 CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
234
235 CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid)
236
237 CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
238
239 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
240
241 IF (momViscosity) THEN
242 C Calculate del^2 u and del^2 v for bi-harmonic term
243 IF (viscA4.NE.0. .OR. viscA4Grid.NE.0.) THEN
244 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
245 O del2u,del2v,
246 & myThid)
247 CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid)
248 CALL MOM_VI_CALC_RELVORT3(
249 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
250 ENDIF
251 C Calculate dissipation terms for U and V equations
252 C in terms of vorticity and divergence
253 IF (viscAh.NE.0. .OR. viscA4.NE.0. .OR.
254 & viscAhGrid.NE.0. .OR. viscA4Grid.NE.0. ) THEN
255 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
256 O uDiss,vDiss,
257 & myThid)
258 ENDIF
259 C or in terms of tension and strain
260 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
261 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
262 O tension,
263 I myThid)
264 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
265 O strain,
266 I myThid)
267 CALL MOM_HDISSIP(bi,bj,k,
268 I tension,strain,hFacZ,viscAtension,viscAstrain,
269 O uDiss,vDiss,
270 I myThid)
271 ENDIF
272 ENDIF
273
274 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
275 c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
276
277 C---- Zonal momentum equation starts here
278
279 C-- Vertical flux (fVer is at upper face of "u" cell)
280
281 C Eddy component of vertical flux (interior component only) -> vrF
282 IF (momViscosity.AND..NOT.implicitViscosity)
283 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
284
285 C Combine fluxes
286 DO j=jMin,jMax
287 DO i=iMin,iMax
288 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
289 ENDDO
290 ENDDO
291
292 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
293 DO j=2-Oly,sNy+Oly-1
294 DO i=2-Olx,sNx+Olx-1
295 gU(i,j,k,bi,bj) = uDiss(i,j)
296 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
297 & *recip_rAw(i,j,bi,bj)
298 & *(
299 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
300 & )
301 & - phxFac*dPhiHydX(i,j)
302 ENDDO
303 ENDDO
304
305 C-- No-slip and drag BCs appear as body forces in cell abutting topography
306 IF (momViscosity.AND.no_slip_sides) THEN
307 C- No-slip BCs impose a drag at walls...
308 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
309 DO j=jMin,jMax
310 DO i=iMin,iMax
311 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
312 ENDDO
313 ENDDO
314 ENDIF
315
316 C- No-slip BCs impose a drag at bottom
317 IF (momViscosity.AND.bottomDragTerms) THEN
318 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
319 DO j=jMin,jMax
320 DO i=iMin,iMax
321 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
322 ENDDO
323 ENDDO
324 ENDIF
325
326 C-- Metric terms for curvilinear grid systems
327 c IF (usingSphericalPolarMTerms) THEN
328 C o Spherical polar grid metric terms
329 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
330 c DO j=jMin,jMax
331 c DO i=iMin,iMax
332 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
333 c ENDDO
334 c ENDDO
335 c ENDIF
336
337 C---- Meridional momentum equation starts here
338
339 C-- Vertical flux (fVer is at upper face of "v" cell)
340
341 C Eddy component of vertical flux (interior component only) -> vrF
342 IF (momViscosity.AND..NOT.implicitViscosity)
343 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
344
345 C Combine fluxes -> fVerV
346 DO j=jMin,jMax
347 DO i=iMin,iMax
348 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
349 ENDDO
350 ENDDO
351
352 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
353 DO j=jMin,jMax
354 DO i=iMin,iMax
355 gV(i,j,k,bi,bj) = vDiss(i,j)
356 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
357 & *recip_rAs(i,j,bi,bj)
358 & *(
359 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
360 & )
361 & - phyFac*dPhiHydY(i,j)
362 ENDDO
363 ENDDO
364
365 C-- No-slip and drag BCs appear as body forces in cell abutting topography
366 IF (momViscosity.AND.no_slip_sides) THEN
367 C- No-slip BCs impose a drag at walls...
368 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
369 DO j=jMin,jMax
370 DO i=iMin,iMax
371 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
372 ENDDO
373 ENDDO
374 ENDIF
375 C- No-slip BCs impose a drag at bottom
376 IF (momViscosity.AND.bottomDragTerms) THEN
377 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
378 DO j=jMin,jMax
379 DO i=iMin,iMax
380 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
381 ENDDO
382 ENDDO
383 ENDIF
384
385 C-- Metric terms for curvilinear grid systems
386 c IF (usingSphericalPolarMTerms) THEN
387 C o Spherical polar grid metric terms
388 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
389 c DO j=jMin,jMax
390 c DO i=iMin,iMax
391 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
392 c ENDDO
393 c ENDDO
394 c ENDIF
395
396 C-- Horizontal Coriolis terms
397 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
398 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
399 & uCf,vCf,myThid)
400 DO j=jMin,jMax
401 DO i=iMin,iMax
402 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
403 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
404 ENDDO
405 ENDDO
406 ENDIF
407
408 IF (momAdvection) THEN
409 C-- Horizontal advection of relative vorticity
410 c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
411 CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
412 & uCf,myThid)
413 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
414 DO j=jMin,jMax
415 DO i=iMin,iMax
416 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
417 ENDDO
418 ENDDO
419 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
420 CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
421 & vCf,myThid)
422 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
423 DO j=jMin,jMax
424 DO i=iMin,iMax
425 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
426 ENDDO
427 ENDDO
428
429 #ifdef ALLOW_TIMEAVE
430 #ifndef HRCUBE
431 IF (taveFreq.GT.0.) THEN
432 CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
433 & Nr, k, bi, bj, myThid)
434 CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
435 & Nr, k, bi, bj, myThid)
436 ENDIF
437 #endif /* ALLOW_TIMEAVE */
438 #endif /* ndef HRCUBE */
439
440 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
441 IF ( .NOT. momImplVertAdv ) THEN
442 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
443 DO j=jMin,jMax
444 DO i=iMin,iMax
445 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
446 ENDDO
447 ENDDO
448 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
449 DO j=jMin,jMax
450 DO i=iMin,iMax
451 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
452 ENDDO
453 ENDDO
454 ENDIF
455
456 C-- Bernoulli term
457 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
458 DO j=jMin,jMax
459 DO i=iMin,iMax
460 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
461 ENDDO
462 ENDDO
463 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
464 DO j=jMin,jMax
465 DO i=iMin,iMax
466 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
467 ENDDO
468 ENDDO
469 C-- end if momAdvection
470 ENDIF
471
472 C-- Set du/dt & dv/dt on boundaries to zero
473 DO j=jMin,jMax
474 DO i=iMin,iMax
475 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
476 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
477 ENDDO
478 ENDDO
479
480
481 IF (
482 & DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,
483 & myCurrentTime-deltaTClock)
484 & ) THEN
485 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
486 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
487 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
488 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
489 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
490 CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
491 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
492 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
493 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
494 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
495 ENDIF
496
497 #endif /* ALLOW_MOM_VECINV */
498
499 RETURN
500 END

  ViewVC Help
Powered by ViewVC 1.1.22