/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (show annotations) (download)
Sun Jan 25 00:31:52 2004 UTC (20 years, 4 months ago) by dimitri
Branch: MAIN
CVS Tags: hrcube_2
Changes since 1.12: +4 -2 lines
o limit timeave output for hi-res integrations

1 C $Header: /usr/local/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.12 2004/01/03 00:51:42 jmc Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6
7 SUBROUTINE MOM_VECINV(
8 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
9 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
10 U fVerU, fVerV,
11 I myCurrentTime, myIter, myThid)
12 C /==========================================================\
13 C | S/R MOM_VECINV |
14 C | o Form the right hand-side of the momentum equation. |
15 C |==========================================================|
16 C | Terms are evaluated one layer at a time working from |
17 C | the bottom to the top. The vertically integrated |
18 C | barotropic flow tendency term is evluated by summing the |
19 C | tendencies. |
20 C | Notes: |
21 C | We have not sorted out an entirely satisfactory formula |
22 C | for the diffusion equation bc with lopping. The present |
23 C | form produces a diffusive flux that does not scale with |
24 C | open-area. Need to do something to solidfy this and to |
25 C | deal "properly" with thin walls. |
26 C \==========================================================/
27 IMPLICIT NONE
28
29 C == Global variables ==
30 #include "SIZE.h"
31 #include "DYNVARS.h"
32 #include "EEPARAMS.h"
33 #include "PARAMS.h"
34 #include "GRID.h"
35 #ifdef ALLOW_TIMEAVE
36 #include "TIMEAVE_STATV.h"
37 #endif
38
39 C == Routine arguments ==
40 C fVerU - Flux of momentum in the vertical
41 C fVerV direction out of the upper face of a cell K
42 C ( flux into the cell above ).
43 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
44 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
45 C results will be set.
46 C kUp, kDown - Index for upper and lower layers.
47 C myThid - Instance number for this innvocation of CALC_MOM_RHS
48 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
50 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
51 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
52 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
53 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
54 INTEGER kUp,kDown
55 _RL myCurrentTime
56 INTEGER myIter
57 INTEGER myThid
58 INTEGER bi,bj,iMin,iMax,jMin,jMax
59
60 #ifdef ALLOW_MOM_VECINV
61
62 C == Functions ==
63 LOGICAL DIFFERENT_MULTIPLE
64 EXTERNAL DIFFERENT_MULTIPLE
65
66 C == Local variables ==
67 _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
88 C I,J,K - Loop counters
89 INTEGER i,j,k
90 C rVelMaskOverride - Factor for imposing special surface boundary conditions
91 C ( set according to free-surface condition ).
92 C hFacROpen - Lopped cell factos used tohold fraction of open
93 C hFacRClosed and closed cell wall.
94 _RL rVelMaskOverride
95 C xxxFac - On-off tracer parameters used for switching terms off.
96 _RL uDudxFac
97 _RL AhDudxFac
98 _RL A4DuxxdxFac
99 _RL vDudyFac
100 _RL AhDudyFac
101 _RL A4DuyydyFac
102 _RL rVelDudrFac
103 _RL ArDudrFac
104 _RL fuFac
105 _RL phxFac
106 _RL mtFacU
107 _RL uDvdxFac
108 _RL AhDvdxFac
109 _RL A4DvxxdxFac
110 _RL vDvdyFac
111 _RL AhDvdyFac
112 _RL A4DvyydyFac
113 _RL rVelDvdrFac
114 _RL ArDvdrFac
115 _RL fvFac
116 _RL phyFac
117 _RL vForcFac
118 _RL mtFacV
119 _RL wVelBottomOverride
120 LOGICAL bottomDragTerms
121 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
125
126 #ifdef ALLOW_AUTODIFF_TAMC
127 C-- only the kDown part of fverU/V is set in this subroutine
128 C-- the kUp is still required
129 C-- In the case of mom_fluxform Kup is set as well
130 C-- (at least in part)
131 fVerU(1,1,kUp) = fVerU(1,1,kUp)
132 fVerV(1,1,kUp) = fVerV(1,1,kUp)
133 #endif
134
135 rVelMaskOverride=1.
136 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
137 wVelBottomOverride=1.
138 IF (k.EQ.Nr) wVelBottomOverride=0.
139
140 C Initialise intermediate terms
141 DO J=1-OLy,sNy+OLy
142 DO I=1-OLx,sNx+OLx
143 aF(i,j) = 0.
144 vF(i,j) = 0.
145 vrF(i,j) = 0.
146 uCf(i,j) = 0.
147 vCf(i,j) = 0.
148 mT(i,j) = 0.
149 pF(i,j) = 0.
150 del2u(i,j) = 0.
151 del2v(i,j) = 0.
152 dStar(i,j) = 0.
153 zStar(i,j) = 0.
154 uDiss(i,j) = 0.
155 vDiss(i,j) = 0.
156 vort3(i,j) = 0.
157 omega3(i,j) = 0.
158 ke(i,j) = 0.
159 #ifdef ALLOW_AUTODIFF_TAMC
160 strain(i,j) = 0. _d 0
161 tension(i,j) = 0. _d 0
162 #endif
163 ENDDO
164 ENDDO
165
166 C-- Term by term tracer parmeters
167 C o U momentum equation
168 uDudxFac = afFacMom*1.
169 AhDudxFac = vfFacMom*1.
170 A4DuxxdxFac = vfFacMom*1.
171 vDudyFac = afFacMom*1.
172 AhDudyFac = vfFacMom*1.
173 A4DuyydyFac = vfFacMom*1.
174 rVelDudrFac = afFacMom*1.
175 ArDudrFac = vfFacMom*1.
176 mTFacU = mtFacMom*1.
177 fuFac = cfFacMom*1.
178 phxFac = pfFacMom*1.
179 C o V momentum equation
180 uDvdxFac = afFacMom*1.
181 AhDvdxFac = vfFacMom*1.
182 A4DvxxdxFac = vfFacMom*1.
183 vDvdyFac = afFacMom*1.
184 AhDvdyFac = vfFacMom*1.
185 A4DvyydyFac = vfFacMom*1.
186 rVelDvdrFac = afFacMom*1.
187 ArDvdrFac = vfFacMom*1.
188 mTFacV = mtFacMom*1.
189 fvFac = cfFacMom*1.
190 phyFac = pfFacMom*1.
191 vForcFac = foFacMom*1.
192
193 IF ( no_slip_bottom
194 & .OR. bottomDragQuadratic.NE.0.
195 & .OR. bottomDragLinear.NE.0.) THEN
196 bottomDragTerms=.TRUE.
197 ELSE
198 bottomDragTerms=.FALSE.
199 ENDIF
200
201 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
202 IF (staggerTimeStep) THEN
203 phxFac = 0.
204 phyFac = 0.
205 ENDIF
206
207 C-- Calculate open water fraction at vorticity points
208 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
209
210 C---- Calculate common quantities used in both U and V equations
211 C Calculate tracer cell face open areas
212 DO j=1-OLy,sNy+OLy
213 DO i=1-OLx,sNx+OLx
214 xA(i,j) = _dyG(i,j,bi,bj)
215 & *drF(k)*_hFacW(i,j,k,bi,bj)
216 yA(i,j) = _dxG(i,j,bi,bj)
217 & *drF(k)*_hFacS(i,j,k,bi,bj)
218 ENDDO
219 ENDDO
220
221 C Make local copies of horizontal flow field
222 DO j=1-OLy,sNy+OLy
223 DO i=1-OLx,sNx+OLx
224 uFld(i,j) = uVel(i,j,k,bi,bj)
225 vFld(i,j) = vVel(i,j,k,bi,bj)
226 ENDDO
227 ENDDO
228
229 C note (jmc) : Dissipation and Vort3 advection do not necesary
230 C use the same maskZ (and hFacZ) => needs 2 call(s)
231 c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
232
233 CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
234
235 CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid)
236
237 CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
238
239 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
240
241 IF (momViscosity) THEN
242 C Calculate del^2 u and del^2 v for bi-harmonic term
243 IF (viscA4.NE.0.) THEN
244 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
245 O del2u,del2v,
246 & myThid)
247 CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid)
248 CALL MOM_VI_CALC_RELVORT3(
249 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
250 ENDIF
251 C Calculate dissipation terms for U and V equations
252 C in terms of vorticity and divergence
253 IF (viscAh.NE.0. .OR. viscA4.NE.0.) THEN
254 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
255 O uDiss,vDiss,
256 & myThid)
257 ENDIF
258 C or in terms of tension and strain
259 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
260 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
261 O tension,
262 I myThid)
263 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
264 O strain,
265 I myThid)
266 CALL MOM_HDISSIP(bi,bj,k,
267 I tension,strain,hFacZ,viscAtension,viscAstrain,
268 O uDiss,vDiss,
269 I myThid)
270 ENDIF
271 ENDIF
272
273 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
274 c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
275
276 C---- Zonal momentum equation starts here
277
278 C-- Vertical flux (fVer is at upper face of "u" cell)
279
280 C Eddy component of vertical flux (interior component only) -> vrF
281 IF (momViscosity.AND..NOT.implicitViscosity)
282 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
283
284 C Combine fluxes
285 DO j=jMin,jMax
286 DO i=iMin,iMax
287 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
288 ENDDO
289 ENDDO
290
291 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
292 DO j=2-Oly,sNy+Oly-1
293 DO i=2-Olx,sNx+Olx-1
294 gU(i,j,k,bi,bj) = uDiss(i,j)
295 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
296 & *recip_rAw(i,j,bi,bj)
297 & *(
298 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
299 & )
300 & - phxFac*dPhiHydX(i,j)
301 ENDDO
302 ENDDO
303
304 C-- No-slip and drag BCs appear as body forces in cell abutting topography
305 IF (momViscosity.AND.no_slip_sides) THEN
306 C- No-slip BCs impose a drag at walls...
307 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
308 DO j=jMin,jMax
309 DO i=iMin,iMax
310 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
311 ENDDO
312 ENDDO
313 ENDIF
314
315 C- No-slip BCs impose a drag at bottom
316 IF (momViscosity.AND.bottomDragTerms) THEN
317 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
318 DO j=jMin,jMax
319 DO i=iMin,iMax
320 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
321 ENDDO
322 ENDDO
323 ENDIF
324
325 C-- Metric terms for curvilinear grid systems
326 c IF (usingSphericalPolarMTerms) THEN
327 C o Spherical polar grid metric terms
328 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
329 c DO j=jMin,jMax
330 c DO i=iMin,iMax
331 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
332 c ENDDO
333 c ENDDO
334 c ENDIF
335
336 C---- Meridional momentum equation starts here
337
338 C-- Vertical flux (fVer is at upper face of "v" cell)
339
340 C Eddy component of vertical flux (interior component only) -> vrF
341 IF (momViscosity.AND..NOT.implicitViscosity)
342 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
343
344 C Combine fluxes -> fVerV
345 DO j=jMin,jMax
346 DO i=iMin,iMax
347 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
348 ENDDO
349 ENDDO
350
351 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
352 DO j=jMin,jMax
353 DO i=iMin,iMax
354 gV(i,j,k,bi,bj) = vDiss(i,j)
355 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
356 & *recip_rAs(i,j,bi,bj)
357 & *(
358 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
359 & )
360 & - phyFac*dPhiHydY(i,j)
361 ENDDO
362 ENDDO
363
364 C-- No-slip and drag BCs appear as body forces in cell abutting topography
365 IF (momViscosity.AND.no_slip_sides) THEN
366 C- No-slip BCs impose a drag at walls...
367 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
368 DO j=jMin,jMax
369 DO i=iMin,iMax
370 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
371 ENDDO
372 ENDDO
373 ENDIF
374 C- No-slip BCs impose a drag at bottom
375 IF (momViscosity.AND.bottomDragTerms) THEN
376 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
377 DO j=jMin,jMax
378 DO i=iMin,iMax
379 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
380 ENDDO
381 ENDDO
382 ENDIF
383
384 C-- Metric terms for curvilinear grid systems
385 c IF (usingSphericalPolarMTerms) THEN
386 C o Spherical polar grid metric terms
387 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
388 c DO j=jMin,jMax
389 c DO i=iMin,iMax
390 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
391 c ENDDO
392 c ENDDO
393 c ENDIF
394
395 C-- Horizontal Coriolis terms
396 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
397 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
398 & uCf,vCf,myThid)
399 DO j=jMin,jMax
400 DO i=iMin,iMax
401 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
402 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
403 ENDDO
404 ENDDO
405 ENDIF
406
407 IF (momAdvection) THEN
408 C-- Horizontal advection of relative vorticity
409 c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
410 CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
411 & uCf,myThid)
412 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
413 DO j=jMin,jMax
414 DO i=iMin,iMax
415 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
416 ENDDO
417 ENDDO
418 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
419 CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
420 & vCf,myThid)
421 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
422 DO j=jMin,jMax
423 DO i=iMin,iMax
424 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
425 ENDDO
426 ENDDO
427
428 #ifdef ALLOW_TIMEAVE
429 #ifndef HRCUBE
430 IF (taveFreq.GT.0.) THEN
431 CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
432 & Nr, k, bi, bj, myThid)
433 CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
434 & Nr, k, bi, bj, myThid)
435 ENDIF
436 #endif /* ALLOW_TIMEAVE */
437 #endif /* ndef HRCUBE */
438
439 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
440 IF ( .NOT. momImplVertAdv ) THEN
441 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
442 DO j=jMin,jMax
443 DO i=iMin,iMax
444 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
445 ENDDO
446 ENDDO
447 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
448 DO j=jMin,jMax
449 DO i=iMin,iMax
450 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
451 ENDDO
452 ENDDO
453 ENDIF
454
455 C-- Bernoulli term
456 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
457 DO j=jMin,jMax
458 DO i=iMin,iMax
459 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
460 ENDDO
461 ENDDO
462 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
463 DO j=jMin,jMax
464 DO i=iMin,iMax
465 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
466 ENDDO
467 ENDDO
468 C-- end if momAdvection
469 ENDIF
470
471 C-- Set du/dt & dv/dt on boundaries to zero
472 DO j=jMin,jMax
473 DO i=iMin,iMax
474 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
475 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
476 ENDDO
477 ENDDO
478
479
480 IF (
481 & DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,
482 & myCurrentTime-deltaTClock)
483 & ) THEN
484 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
485 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
486 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
487 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
488 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
489 CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
490 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
491 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
492 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
493 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
494 ENDIF
495
496 #endif /* ALLOW_MOM_VECINV */
497
498 RETURN
499 END

  ViewVC Help
Powered by ViewVC 1.1.22