/[MITgcm]/MITgcm/pkg/mom_vecinv/mom_vecinv.F
ViewVC logotype

Contents of /MITgcm/pkg/mom_vecinv/mom_vecinv.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (show annotations) (download)
Sun Oct 26 01:01:23 2003 UTC (20 years, 7 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint51q_post, checkpoint51o_post, checkpoint51p_post
Changes since 1.8: +10 -8 lines
o Correcting initialisations for fVerU, fVerV.
o helping TAF to recognize dependency on kUp for
  fVerU, fVerV

1 C $Header: /u/gcmpack/MITgcm/pkg/mom_vecinv/mom_vecinv.F,v 1.8 2003/10/10 23:00:01 heimbach Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 SUBROUTINE MOM_VECINV(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kUp,kDown,
8 I dPhiHydX,dPhiHydY,KappaRU,KappaRV,
9 U fVerU, fVerV,
10 I myCurrentTime, myIter, myThid)
11 C /==========================================================\
12 C | S/R MOM_VECINV |
13 C | o Form the right hand-side of the momentum equation. |
14 C |==========================================================|
15 C | Terms are evaluated one layer at a time working from |
16 C | the bottom to the top. The vertically integrated |
17 C | barotropic flow tendency term is evluated by summing the |
18 C | tendencies. |
19 C | Notes: |
20 C | We have not sorted out an entirely satisfactory formula |
21 C | for the diffusion equation bc with lopping. The present |
22 C | form produces a diffusive flux that does not scale with |
23 C | open-area. Need to do something to solidfy this and to |
24 C | deal "properly" with thin walls. |
25 C \==========================================================/
26 IMPLICIT NONE
27
28 C == Global variables ==
29 #include "SIZE.h"
30 #include "DYNVARS.h"
31 #include "EEPARAMS.h"
32 #include "PARAMS.h"
33 #include "GRID.h"
34 #ifdef ALLOW_TIMEAVE
35 #include "TIMEAVE_STATV.h"
36 #endif
37
38 C == Routine arguments ==
39 C fVerU - Flux of momentum in the vertical
40 C fVerV direction out of the upper face of a cell K
41 C ( flux into the cell above ).
42 C dPhiHydX,Y :: Gradient (X & Y dir.) of Hydrostatic Potential
43 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
44 C results will be set.
45 C kUp, kDown - Index for upper and lower layers.
46 C myThid - Instance number for this innvocation of CALC_MOM_RHS
47 _RL dPhiHydX(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
48 _RL dPhiHydY(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
49 _RL KappaRU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
50 _RL KappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
51 _RL fVerU(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
52 _RL fVerV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
53 INTEGER kUp,kDown
54 _RL myCurrentTime
55 INTEGER myIter
56 INTEGER myThid
57 INTEGER bi,bj,iMin,iMax,jMin,jMax
58
59 #ifndef DISABLE_MOM_VECINV
60
61 C == Functions ==
62 LOGICAL DIFFERENT_MULTIPLE
63 EXTERNAL DIFFERENT_MULTIPLE
64
65 C == Local variables ==
66 _RL aF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RL vF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL vrF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL uCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL vCf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL mT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL pF (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL del2u(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL del2v(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL tension(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL strain(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RS r_hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RS xA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 _RS yA(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81 _RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 _RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 _RL uDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
86 _RL vDiss(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
87 C I,J,K - Loop counters
88 INTEGER i,j,k
89 C rVelMaskOverride - Factor for imposing special surface boundary conditions
90 C ( set according to free-surface condition ).
91 C hFacROpen - Lopped cell factos used tohold fraction of open
92 C hFacRClosed and closed cell wall.
93 _RL rVelMaskOverride
94 C xxxFac - On-off tracer parameters used for switching terms off.
95 _RL uDudxFac
96 _RL AhDudxFac
97 _RL A4DuxxdxFac
98 _RL vDudyFac
99 _RL AhDudyFac
100 _RL A4DuyydyFac
101 _RL rVelDudrFac
102 _RL ArDudrFac
103 _RL fuFac
104 _RL phxFac
105 _RL mtFacU
106 _RL uDvdxFac
107 _RL AhDvdxFac
108 _RL A4DvxxdxFac
109 _RL vDvdyFac
110 _RL AhDvdyFac
111 _RL A4DvyydyFac
112 _RL rVelDvdrFac
113 _RL ArDvdrFac
114 _RL fvFac
115 _RL phyFac
116 _RL vForcFac
117 _RL mtFacV
118 _RL wVelBottomOverride
119 LOGICAL bottomDragTerms
120 _RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
121 _RL omega3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
122 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
123 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
124
125 #ifdef ALLOW_AUTODIFF_TAMC
126 C-- only the kDown part of fverU/V is set in this subroutine
127 C-- the kUp is still required
128 C-- In the case of mom_fluxform Kup is set as well
129 C-- (at least in part)
130 fVerU(1,1,kUp) = fVerU(1,1,kUp)
131 fVerV(1,1,kUp) = fVerV(1,1,kUp)
132 #endif
133
134 rVelMaskOverride=1.
135 IF ( k .EQ. 1 ) rVelMaskOverride=freeSurfFac
136 wVelBottomOverride=1.
137 IF (k.EQ.Nr) wVelBottomOverride=0.
138
139 C Initialise intermediate terms
140 DO J=1-OLy,sNy+OLy
141 DO I=1-OLx,sNx+OLx
142 aF(i,j) = 0.
143 vF(i,j) = 0.
144 vrF(i,j) = 0.
145 uCf(i,j) = 0.
146 vCf(i,j) = 0.
147 mT(i,j) = 0.
148 pF(i,j) = 0.
149 del2u(i,j) = 0.
150 del2v(i,j) = 0.
151 dStar(i,j) = 0.
152 zStar(i,j) = 0.
153 uDiss(i,j) = 0.
154 vDiss(i,j) = 0.
155 vort3(i,j) = 0.
156 omega3(i,j) = 0.
157 ke(i,j) = 0.
158 #ifdef ALLOW_AUTODIFF_TAMC
159 strain(i,j) = 0. _d 0
160 tension(i,j) = 0. _d 0
161 #endif
162 ENDDO
163 ENDDO
164
165 C-- Term by term tracer parmeters
166 C o U momentum equation
167 uDudxFac = afFacMom*1.
168 AhDudxFac = vfFacMom*1.
169 A4DuxxdxFac = vfFacMom*1.
170 vDudyFac = afFacMom*1.
171 AhDudyFac = vfFacMom*1.
172 A4DuyydyFac = vfFacMom*1.
173 rVelDudrFac = afFacMom*1.
174 ArDudrFac = vfFacMom*1.
175 mTFacU = mtFacMom*1.
176 fuFac = cfFacMom*1.
177 phxFac = pfFacMom*1.
178 C o V momentum equation
179 uDvdxFac = afFacMom*1.
180 AhDvdxFac = vfFacMom*1.
181 A4DvxxdxFac = vfFacMom*1.
182 vDvdyFac = afFacMom*1.
183 AhDvdyFac = vfFacMom*1.
184 A4DvyydyFac = vfFacMom*1.
185 rVelDvdrFac = afFacMom*1.
186 ArDvdrFac = vfFacMom*1.
187 mTFacV = mtFacMom*1.
188 fvFac = cfFacMom*1.
189 phyFac = pfFacMom*1.
190 vForcFac = foFacMom*1.
191
192 IF ( no_slip_bottom
193 & .OR. bottomDragQuadratic.NE.0.
194 & .OR. bottomDragLinear.NE.0.) THEN
195 bottomDragTerms=.TRUE.
196 ELSE
197 bottomDragTerms=.FALSE.
198 ENDIF
199
200 C-- with stagger time stepping, grad Phi_Hyp is directly incoporated in TIMESTEP
201 IF (staggerTimeStep) THEN
202 phxFac = 0.
203 phyFac = 0.
204 ENDIF
205
206 C-- Calculate open water fraction at vorticity points
207 CALL MOM_CALC_HFACZ(bi,bj,k,hFacZ,r_hFacZ,myThid)
208
209 C---- Calculate common quantities used in both U and V equations
210 C Calculate tracer cell face open areas
211 DO j=1-OLy,sNy+OLy
212 DO i=1-OLx,sNx+OLx
213 xA(i,j) = _dyG(i,j,bi,bj)
214 & *drF(k)*_hFacW(i,j,k,bi,bj)
215 yA(i,j) = _dxG(i,j,bi,bj)
216 & *drF(k)*_hFacS(i,j,k,bi,bj)
217 ENDDO
218 ENDDO
219
220 C Make local copies of horizontal flow field
221 DO j=1-OLy,sNy+OLy
222 DO i=1-OLx,sNx+OLx
223 uFld(i,j) = uVel(i,j,k,bi,bj)
224 vFld(i,j) = vVel(i,j,k,bi,bj)
225 ENDDO
226 ENDDO
227
228 C note (jmc) : Dissipation and Vort3 advection do not necesary
229 C use the same maskZ (and hFacZ) => needs 2 call(s)
230 c CALL MOM_VI_HFACZ_DISS(bi,bj,k,hFacZ,r_hFacZ,myThid)
231
232 CALL MOM_VI_CALC_KE(bi,bj,k,uFld,vFld,KE,myThid)
233
234 CALL MOM_VI_CALC_HDIV(bi,bj,k,uFld,vFld,hDiv,myThid)
235
236 CALL MOM_VI_CALC_RELVORT3(bi,bj,k,uFld,vFld,hFacZ,vort3,myThid)
237
238 c CALL MOM_VI_CALC_ABSVORT3(bi,bj,k,vort3,omega3,myThid)
239
240 IF (momViscosity) THEN
241 C Calculate del^2 u and del^2 v for bi-harmonic term
242 IF (viscA4.NE.0.) THEN
243 CALL MOM_VI_DEL2UV(bi,bj,k,hDiv,vort3,hFacZ,
244 O del2u,del2v,
245 & myThid)
246 CALL MOM_VI_CALC_HDIV(bi,bj,k,del2u,del2v,dStar,myThid)
247 CALL MOM_VI_CALC_RELVORT3(
248 & bi,bj,k,del2u,del2v,hFacZ,zStar,myThid)
249 ENDIF
250 C Calculate dissipation terms for U and V equations
251 C in terms of vorticity and divergence
252 IF (viscAh.NE.0. .OR. viscA4.NE.0.) THEN
253 CALL MOM_VI_HDISSIP(bi,bj,k,hDiv,vort3,hFacZ,dStar,zStar,
254 O uDiss,vDiss,
255 & myThid)
256 ENDIF
257 C or in terms of tension and strain
258 IF (viscAstrain.NE.0. .OR. viscAtension.NE.0.) THEN
259 CALL MOM_CALC_TENSION(bi,bj,k,uFld,vFld,
260 O tension,
261 I myThid)
262 CALL MOM_CALC_STRAIN(bi,bj,k,uFld,vFld,hFacZ,
263 O strain,
264 I myThid)
265 CALL MOM_HDISSIP(bi,bj,k,
266 I tension,strain,hFacZ,viscAtension,viscAstrain,
267 O uDiss,vDiss,
268 I myThid)
269 ENDIF
270 ENDIF
271
272 C- Return to standard hfacZ (min-4) and mask vort3 accordingly:
273 c CALL MOM_VI_MASK_VORT3(bi,bj,k,hFacZ,r_hFacZ,vort3,myThid)
274
275 C---- Zonal momentum equation starts here
276
277 C-- Vertical flux (fVer is at upper face of "u" cell)
278
279 C Eddy component of vertical flux (interior component only) -> vrF
280 IF (momViscosity.AND..NOT.implicitViscosity)
281 & CALL MOM_U_RVISCFLUX(bi,bj,k,uVel,KappaRU,vrF,myThid)
282
283 C Combine fluxes
284 DO j=jMin,jMax
285 DO i=iMin,iMax
286 fVerU(i,j,kDown) = ArDudrFac*vrF(i,j)
287 ENDDO
288 ENDDO
289
290 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
291 DO j=2-Oly,sNy+Oly-1
292 DO i=2-Olx,sNx+Olx-1
293 gU(i,j,k,bi,bj) = uDiss(i,j)
294 & -_recip_hFacW(i,j,k,bi,bj)*recip_drF(k)
295 & *recip_rAw(i,j,bi,bj)
296 & *(
297 & +fVerU(i,j,kUp)*rkFac - fVerU(i,j,kDown)*rkFac
298 & )
299 & - phxFac*dPhiHydX(i,j)
300 ENDDO
301 ENDDO
302
303 C-- No-slip and drag BCs appear as body forces in cell abutting topography
304 IF (momViscosity.AND.no_slip_sides) THEN
305 C- No-slip BCs impose a drag at walls...
306 CALL MOM_U_SIDEDRAG(bi,bj,k,uFld,del2u,hFacZ,vF,myThid)
307 DO j=jMin,jMax
308 DO i=iMin,iMax
309 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
310 ENDDO
311 ENDDO
312 ENDIF
313
314 C- No-slip BCs impose a drag at bottom
315 IF (momViscosity.AND.bottomDragTerms) THEN
316 CALL MOM_U_BOTTOMDRAG(bi,bj,k,uFld,KE,KappaRU,vF,myThid)
317 DO j=jMin,jMax
318 DO i=iMin,iMax
319 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+vF(i,j)
320 ENDDO
321 ENDDO
322 ENDIF
323
324 C-- Metric terms for curvilinear grid systems
325 c IF (usingSphericalPolarMTerms) THEN
326 C o Spherical polar grid metric terms
327 c CALL MOM_U_METRIC_NH(bi,bj,k,uFld,wVel,mT,myThid)
328 c DO j=jMin,jMax
329 c DO i=iMin,iMax
330 c gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+mTFacU*mT(i,j)
331 c ENDDO
332 c ENDDO
333 c ENDIF
334
335 C---- Meridional momentum equation starts here
336
337 C-- Vertical flux (fVer is at upper face of "v" cell)
338
339 C Eddy component of vertical flux (interior component only) -> vrF
340 IF (momViscosity.AND..NOT.implicitViscosity)
341 & CALL MOM_V_RVISCFLUX(bi,bj,k,vVel,KappaRV,vrf,myThid)
342
343 C Combine fluxes -> fVerV
344 DO j=jMin,jMax
345 DO i=iMin,iMax
346 fVerV(i,j,kDown) = ArDvdrFac*vrF(i,j)
347 ENDDO
348 ENDDO
349
350 C-- Tendency is minus divergence of the fluxes + coriolis + pressure term
351 DO j=jMin,jMax
352 DO i=iMin,iMax
353 gV(i,j,k,bi,bj) = vDiss(i,j)
354 & -_recip_hFacS(i,j,k,bi,bj)*recip_drF(k)
355 & *recip_rAs(i,j,bi,bj)
356 & *(
357 & +fVerV(i,j,kUp)*rkFac - fVerV(i,j,kDown)*rkFac
358 & )
359 & - phyFac*dPhiHydY(i,j)
360 ENDDO
361 ENDDO
362
363 C-- No-slip and drag BCs appear as body forces in cell abutting topography
364 IF (momViscosity.AND.no_slip_sides) THEN
365 C- No-slip BCs impose a drag at walls...
366 CALL MOM_V_SIDEDRAG(bi,bj,k,vFld,del2v,hFacZ,vF,myThid)
367 DO j=jMin,jMax
368 DO i=iMin,iMax
369 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
370 ENDDO
371 ENDDO
372 ENDIF
373 C- No-slip BCs impose a drag at bottom
374 IF (momViscosity.AND.bottomDragTerms) THEN
375 CALL MOM_V_BOTTOMDRAG(bi,bj,k,vFld,KE,KappaRV,vF,myThid)
376 DO j=jMin,jMax
377 DO i=iMin,iMax
378 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vF(i,j)
379 ENDDO
380 ENDDO
381 ENDIF
382
383 C-- Metric terms for curvilinear grid systems
384 c IF (usingSphericalPolarMTerms) THEN
385 C o Spherical polar grid metric terms
386 c CALL MOM_V_METRIC_NH(bi,bj,k,vFld,wVel,mT,myThid)
387 c DO j=jMin,jMax
388 c DO i=iMin,iMax
389 c gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+mTFacV*mT(i,j)
390 c ENDDO
391 c ENDDO
392 c ENDIF
393
394 C-- Horizontal Coriolis terms
395 IF (useCoriolis .AND. .NOT.useCDscheme) THEN
396 CALL MOM_VI_CORIOLIS(bi,bj,k,uFld,vFld,omega3,hFacZ,r_hFacZ,
397 & uCf,vCf,myThid)
398 DO j=jMin,jMax
399 DO i=iMin,iMax
400 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
401 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
402 ENDDO
403 ENDDO
404 ENDIF
405
406 IF (momAdvection) THEN
407 C-- Horizontal advection of relative vorticity
408 c CALL MOM_VI_U_CORIOLIS(bi,bj,K,vFld,omega3,r_hFacZ,uCf,myThid)
409 CALL MOM_VI_U_CORIOLIS(bi,bj,k,vFld,vort3,hFacZ,r_hFacZ,
410 & uCf,myThid)
411 c CALL MOM_VI_U_CORIOLIS_C4(bi,bj,K,vFld,vort3,r_hFacZ,uCf,myThid)
412 DO j=jMin,jMax
413 DO i=iMin,iMax
414 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
415 ENDDO
416 ENDDO
417 c CALL MOM_VI_V_CORIOLIS(bi,bj,K,uFld,omega3,r_hFacZ,vCf,myThid)
418 CALL MOM_VI_V_CORIOLIS(bi,bj,k,uFld,vort3,hFacZ,r_hFacZ,
419 & vCf,myThid)
420 c CALL MOM_VI_V_CORIOLIS_C4(bi,bj,K,uFld,vort3,r_hFacZ,vCf,myThid)
421 DO j=jMin,jMax
422 DO i=iMin,iMax
423 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
424 ENDDO
425 ENDDO
426
427 #ifdef ALLOW_TIMEAVE
428 IF (taveFreq.GT.0.) THEN
429 CALL TIMEAVE_CUMUL_1K1T(uZetatave,vCf,deltaTClock,
430 & Nr, k, bi, bj, myThid)
431 CALL TIMEAVE_CUMUL_1K1T(vZetatave,uCf,deltaTClock,
432 & Nr, k, bi, bj, myThid)
433 ENDIF
434 #endif
435
436 C-- Vertical shear terms (-w*du/dr & -w*dv/dr)
437 CALL MOM_VI_U_VERTSHEAR(bi,bj,K,uVel,wVel,uCf,myThid)
438 DO j=jMin,jMax
439 DO i=iMin,iMax
440 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
441 ENDDO
442 ENDDO
443 CALL MOM_VI_V_VERTSHEAR(bi,bj,K,vVel,wVel,vCf,myThid)
444 DO j=jMin,jMax
445 DO i=iMin,iMax
446 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
447 ENDDO
448 ENDDO
449
450 C-- Bernoulli term
451 CALL MOM_VI_U_GRAD_KE(bi,bj,K,KE,uCf,myThid)
452 DO j=jMin,jMax
453 DO i=iMin,iMax
454 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)+uCf(i,j)
455 ENDDO
456 ENDDO
457 CALL MOM_VI_V_GRAD_KE(bi,bj,K,KE,vCf,myThid)
458 DO j=jMin,jMax
459 DO i=iMin,iMax
460 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)+vCf(i,j)
461 ENDDO
462 ENDDO
463 C-- end if momAdvection
464 ENDIF
465
466 C-- Set du/dt & dv/dt on boundaries to zero
467 DO j=jMin,jMax
468 DO i=iMin,iMax
469 gU(i,j,k,bi,bj) = gU(i,j,k,bi,bj)*_maskW(i,j,k,bi,bj)
470 gV(i,j,k,bi,bj) = gV(i,j,k,bi,bj)*_maskS(i,j,k,bi,bj)
471 ENDDO
472 ENDDO
473
474
475 IF (
476 & DIFFERENT_MULTIPLE(diagFreq,myCurrentTime,
477 & myCurrentTime-deltaTClock)
478 & ) THEN
479 CALL WRITE_LOCAL_RL('Ds','I10',1,strain,bi,bj,k,myIter,myThid)
480 CALL WRITE_LOCAL_RL('Dt','I10',1,tension,bi,bj,k,myIter,myThid)
481 CALL WRITE_LOCAL_RL('fV','I10',1,uCf,bi,bj,k,myIter,myThid)
482 CALL WRITE_LOCAL_RL('fU','I10',1,vCf,bi,bj,k,myIter,myThid)
483 CALL WRITE_LOCAL_RL('Du','I10',1,uDiss,bi,bj,k,myIter,myThid)
484 CALL WRITE_LOCAL_RL('Dv','I10',1,vDiss,bi,bj,k,myIter,myThid)
485 CALL WRITE_LOCAL_RL('Z3','I10',1,vort3,bi,bj,k,myIter,myThid)
486 c CALL WRITE_LOCAL_RL('W3','I10',1,omega3,bi,bj,k,myIter,myThid)
487 CALL WRITE_LOCAL_RL('KE','I10',1,KE,bi,bj,k,myIter,myThid)
488 CALL WRITE_LOCAL_RL('D','I10',1,hdiv,bi,bj,k,myIter,myThid)
489 ENDIF
490
491 #endif /* DISABLE_MOM_VECINV */
492
493 RETURN
494 END

  ViewVC Help
Powered by ViewVC 1.1.22